

Steven Prescott

Steven.Prescott@inl.gov

Dynamic PRA Tool EMRALD Update

History

- (2005) Laboratory Directed Research and Development project prove DPRA methods
- (2016) LWRS Updated with web modeling framework and ability to link to other analysis applications
- (2017- present) LWRS Used for several projects, advanced flooding analysis, multi hazard, human reliability, physical security
- (2019) Open source and public facing user interface (UI)
- (2024) Version 3, updated UI with modern React Framework and new modeling capabilities

What is EMRALD? (Event Model Risk Assessment using Linked Diagrams)

Dynamic probabilistic risk assessment (PRA) model based on a three-phased discrete event simulation.

- No time steps
- Jumps to next thing that happens in time.
- Monte Carlo sampling.
- Good for long and/or short time jumps.

Why EMRALD

- 1. Combination of dynamic with traditional modeling techniques
- 2. Industry design focus for UI

Why EMRALD (cont.)

3. Couple existing physics tools with Dynamic PRA capabilities

4. Analyze time dependent conditions

5. Conditionally adjust failure rates and loops

Graphical Modeling

- Web Based
- Drag and Drop
- Online Documentation

Sankey Results Visualization

Use Cases

Models that include any of the following:

- Operator action modeling
- Self checking systems
- Recovery models
- Complex on demand system modeling
- Down-time or up-time estimation
- Degraded equipment repair strategy optimization
- Dose exposure calculations
- Automated control evaluation

Can be calculated in EMRALD and used as a rate in traditional PRA

User Interface Upgrade

The old UI used unsupported Angular JS and MX Graph.

Goal: Develop a new UI while maintaining user interactions as much as possible but easier to maintain packages and update process.

The main tools used by the new UI:

- React main website architecture
- React Flow Graphing tools
- Vitepress Documentation

Key design process

- Model Schema developed and used many processes and auto generated documentation
- Common upgrade code for UI and backend solver

Current Use Cases

Physical Security Case Study

Example Post Reduction

Margin		
Adversary Systems % (Txaggerated Scenarios)		
Scenario	FOF Sim F sults	Added EMRALD Sim
	Primar rargets Hit	Core Damage
A	51.2%	4%
В	68.4%	13.4%
C	52%	14.4%
D	26.4%	25.2%
E	71.6%	37.6%

Possible response force posts reduction ~20%

Defense-in-Depth scenario values, not sensitive information

Risk Informed Dose Analysis

- Using higher enriched fuels causes higher dose calculations.
- Could cause more non-compliance instances.
- Risk informed dynamic methods = margin & relaxed equipment performance requirements.

How it works

- Dynamic EMRALD model of scenarios captures plant behavior and operator actions.
- Cumulative variables tracks dose rates for different task steps.
- EMRALD simulation results provide an average, 5th, 95th and uncertainty for the scenarios.

Example

Demo

Sustaining National Nuclear Assets

lwrs.inl.gov