

A Risk and Economics-informed Evaluation of Work Management Automation Technologies

Outline

- Introduction/Motivation/Problem
- TERA process
- Mapping processes (time, cost, functional reqs)
- Identifying technologies
- Performing TERA on technologies
 - Performance, time reductions, cost reductions
- Technology risks
- Adoption strategy
- Next steps
- Conclusion

Issue and Solution

Sargent & Lundy

Issue:

We've modernized plant infrastructure, but haven't modernized how we manage the data or leveraged it to reduce O&M costs

Solution:

Evaluate the integration of new and existing digital technologies, enhancing operation efficiency and reducing costs

Technical, Economic, Risk, and Adoption Sergent & Lundy Assessment (TERA)

- A quantitative method to systematically **identify**, **evaluate**, **and prioritize modernization investments** in nuclear power plants to reduce inefficiencies and operational costs.
- TERA provides a structured evaluation methodology of new technologies that:
 - **Maximizes ROI** by focusing on highpotential projects.
 - Enables risk-informed decision making and ensures smoother implementation of innovative solutions.
 - Streamlines decision-making processes for modernization efforts, leading to faster innovation cycles
 - Enhances operational efficiency by identifying and mitigating potential risks early

Sargent and Lundy Proprietary & Confidential

TERA Process

2.

3.

4.

5.

6.

model

strategy

Work Week Management Solutions Sargent & Lundy

WRO 1.1 Meeting Package Automation

• Information retrieval, Visualization

Work Week Management Solutions Sargent & Lundy

Work Week Management Solutions Sargent & Lundy

Functional Requirements

Sargent & Lundy

Step	Work Description	Functional Requirement	
2.1	Work is screened in.	N/A	
2.2	The scheduler identifies the affected system.	The scheduling tool shall identify the affected system by reading the location ID and system fields in the screening report or Maximo.	
2.3	The scheduler looks at the cycle plan and identifies any upcoming outages scheduled for the affected system.	The scheduling tool shall access the cycle plan. The scheduling tool shall identify upcoming system outages that correlate with the affected system.	
2.4	Record any upcoming system outages for affected system.	N/A	
2.5	Based on identified responsible group and similar work orders, the scheduler will determine the approximate hours needed from each work group.	The scheduling tool shall access historical work orders for similar tasks. The scheduling tool shall estimate hours needed from each work group based on average hours used in historical work orders for similar tasks.	

Required Functionality

- 1. Generate and Distribute Reports
- 2. Identify and Categorize Items
- 3. Review and Update Records
- 4. Classify and Assess Items
- 5. Identify Similar Records and

Responsible Entities

6. Review and Manage Workflow

Solution Identification and Evaluation

Solution Concept – Work Week Management

Workflow Automation & Tracking using Intelligent Automation Databases -Maximo, INPO Schedule Bunding **Robotic Process Artificial Automation** Intelligence Condition Visualization Reports \geq **Natural Language Business Process New Work** Processing Management Resource Screening **Availability** LIGHT WATER REACTOR Southern SUSTAINABILITY

Sargent & Lundy

Nuclear

Intelligent Automation for Work Week Management

Intelligent automation leverages AI and traditional process automation technologies to streamline processes

- **Reduces operational costs** by automating repetitive tasks and optimizing workflows.
- Improves accuracy and consistency, minimizing human error and increasing productivity.
- Enables data-driven decision-making through real-time insights and predictive analytics.

Economic Benefits for each WRO

- Estimated potential savings possible by automating work management practices for a two-unit site and then extrapolated across the SNC fleet by using:
 - robotic process automation,
 - artificial intelligence,
 - machine learning technologies.
- Key outcomes of the analysis include:
 - Cost estimation of the current processes using plant personnel estimates
 - Cost savings estimations using projected work reductions provided by automated
 - Cost savings could exceed \$1M per year if implemented across entire fleet

Adoption Strategies for Intelligent Automation

Sargent & Lundy

An adoption strategy is beneficial because it ensures a smooth transition and maximizes the effectiveness of new technologies or processes within an organization.

- Boosts user acceptance and engagement.
- Minimizes operational disruptions.
- Accelerates return on investment.
- Reduces resistance to change.
- Reduces overall risks.

- **MM** Obtain cultural adoption support by leadership
- Identify ideal processes for automation
 - Let business operations lead RPA
- **Bring IT on board early**
- Send the right message to staff
- **Build a robust infrastructure**

Conclusion

• Next steps

- Solution development and verification
- Deployment and solution management
- Project Team
 - Vivek Agarwal, INL
 - Ryan Spangler, INL
 - Christianna Howard, S&L
 - John McCague, S&L
 - Jeremy Wasson, SNC
 - Ray Herb, SNC

