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Process Anomaly Detection

» Operates with unlabeled data, making it ideal for
systems and components with limited failure history

+ Effective in detecting general equipment failures by
recognizing changes in plant physics and correlations

* Highly adaptable, can be deployed across diverse
systems due to its reliance on data patterns rather
than predefined labels

Predictive Maintenance

» Operates with labeled data and work order
information, providing increased sensitivity and
diagnosability for known failure modes

» Targets specific equipment that undergoes routine
preventative maintenance, enabling the transition to
predictive maintenance reducing maintenance costs

» Enhances reliability by anticipating failures before they
occur, allowing for condition-based intervention



Process Anomaly Detection

» Current approaches to anomaly detection:
— Perform some preprocessing

— Use groups generated manually from subject matter experts (SMEs)
* Focus on high-value systems

— Require selection of normal and anomalous periods during training
* INL's Automated Latent Anomaly Recognition Method (ALARM) suite of tools can:

- With minimal effort, model a large percentage of a given plant, including numerous
systems that are typically overlooked for modeling

— Be adapted to new NPPs with minimal involvement from subject matter experts



The ALARM toolbox contains a suite of algorithms and tools for automated
and equipment-agnostic anomaly detection

Training — INL
A Deployment — USA

2, = fi(x2. X5, %4)

Preprocessing

Grouping Modeling Monitoring



To minimize performance issues caused by inconsistent data, automated
preprocessing was used to address a range of issues seen in the provided data

The preprocessing steps included:

Unifying sampling intervals
Separating numeric/categoric data
Handling unusual sensor patterns
|dentifying redundant sensors
Accounting for process lag
Normalizing sensor scales
Removing outlier data

Detecting failed-constant data
Accounting for missing data

Measurement

process lag
increased noise

constant-value sensor

sensor drift
recalibration
failed constant MW

missing data

redundant sensors

Time




Due to strong correlations across different subsystems, the grouping process
used a multivariate correlation approach that allowed for overlapping groups
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The grouping methods implemented on NPP data generated over
1,000 groups and monitored more than 1,500 unique sensors



For detection, the PCA and INL-developed LOVO models were used, which
calculate anomaly scores as a function of prediction error

Principal Component Analysis (PCA) Leave-One-Variable-Out (LOVO)
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Anomaly Score

Using NPP data, the algorithms generated four groups (two shown) that
detected a condenser anomaly without prior knowledge of its type or location

Expected behavior: scores rise in response
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Predictive Maintenance

« UserExperience
« Ethical Barriers

Visualization
End-User
« Individual User Differences

Machine Learning
Acceptance

Preventive
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Human Readiness
Enables human-in-
the-loop evaluation

to enhance trust
O

Technology
Readiness
Integrates
heterogeneous
data and multiple
pre-trained
models to assess
component health

Organization
Readiness
Enables
organizational
(industry and
regulator)
readiness by
utilizing trust but
verify approach
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VIPER Interface

7 For Research Purposes Only

Diagnostics Trends Help
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Diagnostics | Trends Help

Which Dataset to use
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Diagnostics Trends Help

Which Feature to Explain?

Select Here

| am a chatbot, how can | help you?
reference_data/data.json

please enter a path to database

For Research Purposes Only

Select an option.

<

Figure A-1. Salem Unit 1 CWS with main condenser consisting of three pairs of condensers.

Load Reference DB |image data/scalable/FigureA-1 caption.PNG Load Image

please enter a path to an image

Clear Conversation




Human Factors Evaluation

* Human Factors scientific expertise
essential ingredient to Al success in
nuclear

« Two complementary studies evaluated
usability

» Quantitative and qualitative data collection
* Multi-generational testing

— plant personnel and new generation
engineers

» User feedback essential for Al adoption
and HTO readiness

Efficiency of
use

User control
and freedom

Consistency
and
standards

Interface
content

User

System
status
visibility

[

— Components
feedback ‘
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Human Factors Key Findings

VIPER technology favorably received

Plant personnel:

requests to include desired status for
comparison

no unnecessary info on display

“trust” an important research topic
important implications for psychology safety

New generation engineers:

indicated diagnosis was clear
requests to improve checkboxes

described interface as relatively easy to
use (low effort required)

high information situation awareness

SVA A

Both populations indicated desire for a
layered architecture display with z-axis
(i.e., simplified interface)



Conclusions

* INL's ALARM and VIPER toolsets offer two complementary paths to improving plant operations and
maintenance

« Using ALARM, models can, with minimal effort, be used to monitor a large percentage of a given plant,
including numerous systems that are typically overlooked for modeling

« With VIPER, plants can transition their maintenance strategy for critical equipment from preventative
maintenance to predictive maintenance, providing explainable insights to support operations

* Implementation of these methods represents a significant advancement in automating operations and
maintenance activities in NPPs, promising enhanced efficiency, reduced costs, and improved safety
through early anomaly detection and data-driven maintenance
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