

FPOG Stakeholder Engagement Meeting – Fire Protection Engineering Evaluation (FPEE) Research Update

Flexible Plant Operations and Generation (FPOG) March 19, 2025 0925 -0940 MST

LWRS Project Lead – Jeff Brown LWRS Pathway Advisor – Jack Cadogan

Meeting Purpose and Objectives

Purpose: In-Process Research Update

- Nuclear-integrated Hydrogen—Code and Licensing Separation Distance Considerations (INL_RPT-24-80476) is under planned revision to:
 - Provide code guidance on utility evaluation of separation distances between colocated high temp electrolysis facilities (HTEF) and NPP SSC's.
 - Obtain expert fire protection engineering review of original code and technical R0 report bases (Jensen Hughes)

Assumed Nuclear Integrated Hydrogen Plant Layout

Reference Nuclear Plant

- Westinghouse 4-loop PWR
 - 1200MW_e/3,700MW_{th}/SWYD: 345kV
 - Typical for 1/3 of operating US NPP Units
- New Hydrogen Steam/Water Supply
- New Behind the Meter Electric

High Temp Electrolysis (HTE) Facility

- 500MW_{DC}
- Thermal Load $-100 MW_{th}$
- Hydrogen Production
 - 300+ tons/day @ 1500 psi

Move

this slide

Plant Interfacing Mods -Licensee Evaluation Approach

Comparative HTEF Licensee Evaluation Approaches

Preliminarily Confirmed Research Conclusions

Nuclear-integrated Hydrogen— Code and Licensing Separation Distance Considerations (INL_RPT-24-80476)

- NFPA 55 & NFPA 2 code-based evaluation may be used for fire protection program evaluation to determine NPP-to-HTEF separation distances
- Applies under both 10 CFR 50.48(a) and 10 CFR 50.48(c) plant licensing bases

Preliminarily Confirmed Research Conclusions

Nuclear-integrated Hydrogen— Code and Licensing Separation Distance Considerations (INL_RPT-24-80476)

 Alternate non-code elective approaches to separationdistance, as described in previous Idaho National Laboratory research reports may also be conservatively applied.

Scenario 15 Scenario 15 is a 200.0 mm break with a temperature of 50°C and pressure of 7.0 MPa

NFPA 55 vs HyRAM+ Heat Flux Separation

	HyRAM+	NFPA 55
	(@ 37.5 kw/m ²)	(Group 3 Exposure)
Leak Size Assumed	76-mm-diameter orifice Case 6 (3-in, pipe)	7.6 mm diameter orifice
Calculated Separation	88 m	21 meters
Leak Size Assumed	203 mm diameter orifice Case 7 (8-in. pipe)	20.3-mm-diameter orifice
Calculated Separation	<mark>208 m</mark>	<mark>54 meters</mark>
Bounding Calculated Separation	208 m	54 meters

HyRAM+ heat flux cases run with assumed full pipe guillotine break vs. NFPA 55 assumed 1% diameter orifice leak.

Bauwens vs. TNT Equiv. O/P Separation

Bauwens

8 m radius for low pressure

NFPA 55 54 m standoff

34 m radius for medium pressure

61 m radius for high pressure

168 m radius for combined production header

TNT Equivalence

10 m radius for low pressure

NFPA 55 54 m standoff

49 m radius for medium pressure

81 m radius for high pressure

204 m radius for combined production header

Historical Hydrogen Design Bases at NPPs

- 10 CFR 50.48(a) and 10 CFR 50.48(c) fire protection regulatory frameworks support co-located compressed gaseous hydrogen for plant process use
- Safe NPP-to-H2 storage separation distances were historically assessed based on NFPA 55, or earlier NFPA 50A, flammable gas regulation rules, depending on plant license vintage
- NFPA 55 (and emerging H2-specific NFPA 2):
 - Are based on pressurized hydrogen system leakage manifesting in small leaks, rather than gross failures
 - Code approaches contain significant safety margins

Sustaining National Nuclear Assets

lwrs.inl.gov