

### **Spring Review Panel Briefing**

Flexible Plant Operations & Generation

### LWR Thermal Energy Extraction Pre-conceptual Design Studies

Alan Wilson Sr. Vice President Sargent & Lundy

March 18 & 19, 2025





## Sargent & Lundy (S&L) Areas of Support 2023 - 2024

• <u>Area 1</u>: Preconceptual Design / Integration of 500MW HTSE Facility with LWR NPPs

(Completed Q2 2024 – Q3 2024)

- PWR Focus Areas
  - NPP H2 Thermal & Electrical Integration
  - 500MW<sub>DC</sub> H2 Facility Design
- **BWR Focus Areas** 
  - NPP H2 Thermal Integration (BWR-specific)

 <u>Area 2</u>: High Volume TPD Analysis from Generic PWR

### (Completed Q2 2023 – Q1 2024)

- **Given Series Green German Control Series and Texas (30%, 50%, and 70% TPD)** 
  - Heat Balance
  - Plant Impacts
  - Equipment Evaluations



## <u>Area 1</u> Preconceptual Design and Integration of 500MW H2 Facility with LWR NPPs



## **PWR** Design and Integration with 500MW SOEC Facility







### NPP Reference Plant

- Based upon typical US designs
  - Westinghouse 4-loop PWR (1/3 of US fleet)
  - 1,200 MW<sub>e</sub> / 3,700 MW<sub>th</sub> / SWYD: 345 kV

- Hydrogen Facility Plant
  - 500MW<sub>DC</sub> SOEC Capacity
- Focus Area
- Thermal Load 100 MW<sub>th</sub>
- H2 Production 320 metric tons/day



### **PWR – 500MW SOEC Facility Integration: Site Layout**





### **PWR – 500MW SOEC Facility Thermal Integration**





### **PWR – 500MW SOEC Facility Electrical Integration**





## **500MW SOEC Facility Integration: PWR vs. BWR**

#### **PWR**

#### **BWR**





## **BWR** Design and Integration with 500MW SOEC Facility







### NPP Reference Plant

- Based upon typical US designs
  - GE Type 4 BWR
  - 1,365 MW<sub>e</sub> / 4,000 MW<sub>th</sub> / SWYD: 345 kV

- Hydrogen Facility Plant
  - 500MW<sub>DC</sub> SOEC Capacity
    - Thermal Load 100 MW<sub>th</sub>
    - H2 Production 320 metric tons/day



### **BWR – 500MW SOEC Facility Thermal Integration**



### **500MW SOEC H2 Facility: General Arrangement**





## Area 2 High Volume TPD Analysis from Generic PWR



### **High Volume Thermal Power Dispatch (TPD) Objective**

Assess feasibility of extracting large volumes of thermal energy (i.e., steam) from a PWR for industrial steam applications

- Heat Balance Modeling
- Plant Impacts and Considerations
- Plant Secondary Equipment Evaluations
  - ✓ High Pressure Turbine (HPT)
  - ✓ Low Pressure Turbines (LPTs)
  - ✓ Condenser
  - ✓ Power Train Pumps
  - ✓ Moisture Separator Reheaters (MSRs)
  - ✓ Feedwater Heaters (FWHs)
  - ✓ Extraction Steam Lines
  - ✓ Heater Drains



#### Supply/Return Locations



### High Volume Thermal Power Dispatch (TPD) Design and Modeling

### **TPD Cases**

- 1. 30% TPD (June 2023)
  - ✤ ~1,100 MWt Extraction
- 2. 50% TPD (November 2023)
  - ✤ ~1,825 MWt Extraction
  - Alternate FWH bypass scenario
- 3. 70% TPD (January 2024)
  - ✤ ~2,550 MWt Extraction

### **Reference Nuclear Power Plant**

- Westinghouse 4-loop PWR
  - Capacity: ~1,200 MWe (3,650 MWt)
  - Main Steam Extraction
  - Condenser Return





### **High Volume Thermal Power Dispatch (TPD) Plant Impacts**

#### **Mechanical Transients**

- ♦ 30% TPD  $\rightarrow$  22% of Main Steam Flow
- ♦ 50% TPD  $\rightarrow$  38% of Main Steam Flow
- ♦ 70% TPD  $\rightarrow$  55% of Main Steam Flow

### **Plant Hazards**

- HELB Program impacts
- Water/steam hammer considerations
- Core Reactivity and Plant Response
  - Startup/shutdown
  - Thermal Load Rejection





### **High Volume Thermal Power Dispatch (TPD) Conclusions**

#### **Minimal Adverse Impacts**

- ✓ High Pressure Turbine (HPT)
- ✓ Low Pressure Turbines (LPTs)
- ✓ Condenser
- Power Train Pumps
- ✓ Moisture Separator Reheaters (MSRs)
- ✓ Heater Drain Tanks

#### Significant Adverse Impacts Above 50% TPD

- Feedwater Heaters (FWHs) Flow Accelerated Corrosion
- Extraction Steam Lines Increased dP and Liner Thicknesses
- FWH Drain Control Valves Increased C<sub>v</sub> and Potential Operational Impacts

Additional Minor Upgrades and Maintenance may be Required for Specific Components



Minor Equipment Replacement and/or Operational Change Expected for 50% TPE

Major Equipment Replacement and/or Operational Change Expected for 70% TPE



% Thermal Power Extracted



### Sargent & Lundy LWRS Hydrogen Design Team Leads:

Alan J. Wilson, PE, Principal Investigator, <u>alan.j.wilson@sargentlundy.com</u> Steven Malak, Sr. Project Manager, <u>steven.malak@sargentlundy.com</u> Henry Fidlow, Responsible Engineer, <u>henry.r.fidlow@sargentlundy.com</u> Pawel Kut, Thermal Analysis Lead, <u>pawel.kut@sargentlundy.com</u> Richard Lindberg, Mechanical Engineering Lead, <u>richardel.c.lindberg@sargentlundy.com</u> Hassan Abughofah, Electrical Engineering Lead, <u>hassan.abughofah@sargentlundy.com</u> Casey Loughrin, Hydrogen System Design Lead, <u>casey.j.loughrin@sargentlundy.com</u> Mark Prasse, Hydrogen SME, <u>marc.g.prasse@sargentlundy.com</u>



# **Sustaining National Nuclear Assets**

lwrs.inl.gov