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Comparison of Electrolysis Processes

* High Temperature Steam Electrolysis
(HTSE)

 Low Temperature Electrolysis
(LTE)

— Electricity & Heat Input

— Higher H, production efficiency, 30%
less electricity use
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* Market case for flexible
nuclear hydrogen production —
take advantage of market

conditions to optimize 150
revenue. 130
 Electricity at marginal
electricity selling price could 110
be sold to the grid or used to
90
generate hydrogen.

» Switch-over price - when the _ 70
marginal price of electricity is < 50
high, the HTSE is rapidly =
turned down to dispatch % 20
electricity to the grid.

Conversely, when the price of 10
electricity is low, then the plant

will ramp up hydrogen -10
production. 30

» For a dedicated industrial user,
hydrogen storage will be -50

necessary.

Hybrid nuclear power/hydrogen plant concept for the price-dependent

electricity market
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Electricity Production
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Plant- and Region-Specific Case Analyses
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* Generate synthetic data for future grid pricing

- NREL: ReEDs and PLEXOS used for capacity expansion and
discrete time step grid pricing

- INL: RAVEN/HERON used to generate continuous, hourly grid
price data
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* Developed time-dependent physical models of nuclear plant
and hydrogen production systems 5000

2500 A

Hydroge
Electricity Price ($/MWh)

10
Fill Storage

— Dispatch power between grid and hydrogen production to
optimize revenue

— Optimized hydrogen plant and storage capacity based on Example of
discounted cash flow economics Optimization of electricity to the grid or H, production

and H, Storage modeling and sizing




Geographical Distribution of CO, Sources for Potential

Chemicals & Fuels Production

High purity CO,
sources are

available near
NPPs

Liquid fuels:

% NUCLEAR PLANT

Are more transportable
and storable than H,
Increase domestic fuel
supply

Compatible with
existing transportation
infrastructure




Ethanol Plant Locations as High Purity CO, Source for

Synfuels

Ethanol Plants (mgalfyr)
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FT Fuels Production Cost — Braidwood Nuclear
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« Hydrogen cost is key cost driver for synfuels production, even with 45 V tax credit.
The impact of 45Q is smaller than that of 45V using nuclear energy.
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Risk area for grid shortfalls during peak / extreme conditions

ul K . Low to mid risk

P | *_;..m areas are prime
i , Sl target for LWR
\ s - 2 " New Englnd FPOG
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MNew York
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WECC o - e
CA/MX W Elevated Risk
l .,;--"'..- 3 B Low Risk

High Risk: shortfalls may occur at normal peak conditions ™ :
Elevated Risk: shortfalls may occur in extreme conditions
Low Risk: low likelihood of electricity supply shortfall

Risk Area Summary 2024-2033

Grid Generation Risk area summary from NERC'’s Long-Term Reliability Assessment 2023
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Electricity Production
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Table 2. Feedstock demand and product capacity for different plant scales. Reproduced from [34].

FT-400 FT-1000
H, (MT/d) 56 235 601
Feedstock
CO; (MT/d) 348 1,580 3,724
Naphtha (MT/d) 39 176 414
Jet fuel (MT/d) 47 213 502
Products
Diesel (MT/d) 26 118 278
Total FT fuel (gal/d) 40,430 183,030 431,050
Carbon conversion 99% 99% 99%
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Figure 15. Supply curve for COz transportation to all nuclear plant.
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gure 19. Supply curve for CO; transportation to Braidwood NPP.



Reference case A[NPV) = $1,727,508,307 Billions
5- 50.5 51.0 51.5 52.0 52.5

L 1

[400, 1000, N/A] MWe

Synfuel Price Premium $1.4E-‘ 52.0
[%0.B, x1, x1.2]

Electricity Price
[23, LMP, 65] 5/MWe

Figure 23. Synfuel production process sensitivity analysis results:
synfuel pricing. and electricity pricing.
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Braidwood Ref. A(NPV) = $bn 1.31 Billions
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Figure 31. Sensitivity analysis results. Braidwood location. synfuel price. CAPEX., CO; feedstock cost.
O&M costs. and Hy PTC value.
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Figure ES-1. A(NPV) for the synfuel IES compared to the BAU case at each LWR NPP location.
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