

Tim McJunkin

Timothy.mcjunkin@inl.gov

March 2025

Value of Nuclear Power to Grid Reliability

 Assessment of Impact of Premature Retirements or Extended Outages of Nuclear Power Plants

Outline

- Team
- Context/Motivation for the study
- NERC Regions Screening Assessment Methodology and Outcome
- Modeling Approach, Assumptions and Results
 - Production Cost Model
- Managing the Flexible Future for Grid Reliability

Team Members

- Nader Samaan
- Sohom Datta
- Li He
- Konstantinos Oikonomou
- Fernando Bereta dos Reis
- Kevin Harris
- Abhishek Somani

- Tim McJunkin
- Binghui Li
- Anudeep Medam

Context and Motivation

- Nuclear Power Plants provide resilient base load across the North American Power System
- Historically in unregulated markets nuclear power has experienced economic challenges that have led to retirements and planned retirements or repurposing towards hybrid processes such as clean hydrogen production
- However, resource adequacy alerts across the western interconnect and MISO particularly in 2023 and drive towards low carbon energy has halted trend towards retirements (e.g., Diablo Canyon)
- Additionally, recent rule making from the environmental protection agency to ban Decabromodiphenyl Ether, a chemical used in components and wiring in NPPs produced an unintended consequence that would have prevented near term extension of maintenance outages had relief not been obtained through cooperation of EPA and NRC
- This activity seeks to quantify the value of Nuclear power plants (NPP's) to the reliability of the electric grid and illustrate the impacts of unplanned retirement and/or long extensions of outages that externalities like the EPA ruling might cause to the grid.

Resource Adequacy Risk

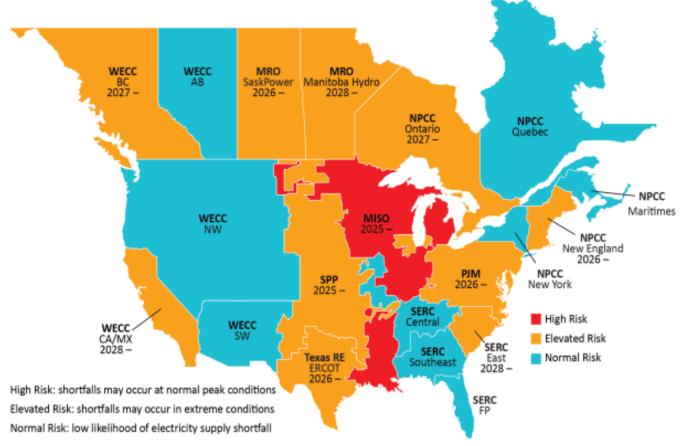
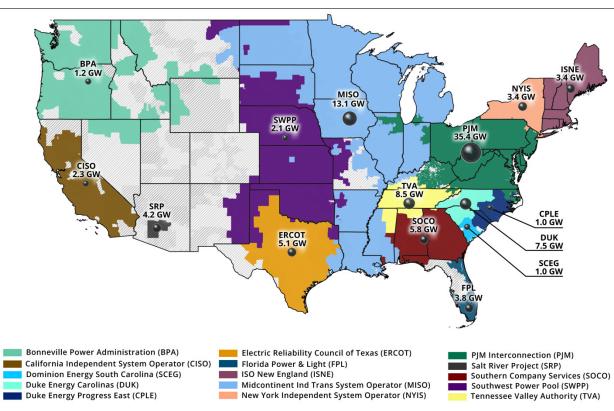


Figure 1: Risk Area Summary 2025–2029

2024 Long-Term Reliability Assessment

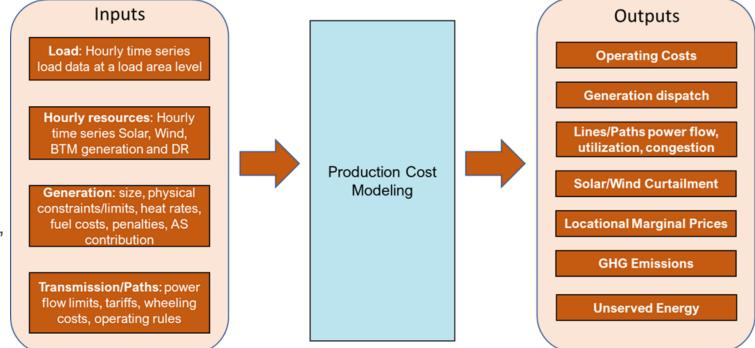
5


https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/NERC_Long%20Term%20Reliability%20Assessment_2024.pdf

6

Capacity by ISO/RTO/BA with Nuclear Plants

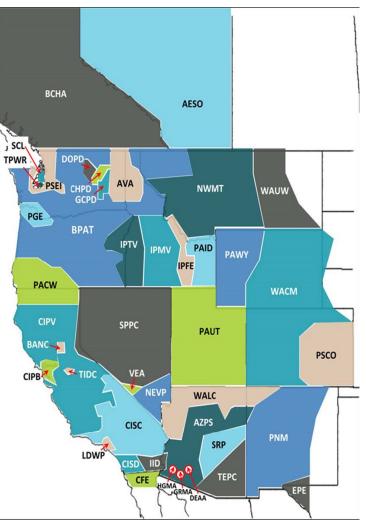
Balancing Authority	Number of Nuclear generating units	Total Capacity (GW)	Nuclear Capacity (GW)	Nuclear %
Duke Energy Carolinas (DUK)	7	29	8	26
Tennessee Valley Authority (TVA)	7	42	8	20
PJM Interconnection, LLC (PJM)	31	212	35	17
Dominion Energy South Carolina (SCEG)	1	7	1	15
Florida Power & Light Company (FPL)	4	28	4	13
Duke Energy Progress East (CPLE)	4	8	1	12
ISO New England Inc. (ISNE)	3	36	3	9
Southern Company Services, Inc. – Trans (SOCO)	6	69	6	8
New York Independent System Operator (NYISO)	4	42	3	8
Midcontinent Independent Transmission System Operator, Inc. (MISO)	13	186	13	7
Southwest Power Pool (SWPP)	2	83	2	2
Salt River Project (SRP)*	4	16	4	27
Bonneville Power Administration (BPA)	1	31	1	4
California Independent System Operator (CISO)	2	64	2	4
Electric Reliability Council of Texas, Inc. (ERCOT)	4	106	5	5



Grouped by Interconnect / sorted by % Nuclear

Production Cost Modeling

- Production cost models solve the chronological unit commitment (UC) and economic dispatch (ED) model to minimize power systems' operating costs of meeting electricity demand and reserve requirements while simultaneously satisfying a wide variety of operating constraints full nodal power flow models.
- Production Cost models:
 - Mimic electricity market operations
 - Identify periods of unserved energy and transmission congestion (reliability)
 - Calculate spot prices at buses and shadow prices on lines
 - Dispatch generators to minimize the production cost given unit characteristics (cost, as well as physical) and chronological load
 - Perform a dispatch such that transmission line limits are not violated under normal, as well as contingency conditions.



Production Cost Modeling Evaluation Metrices

- Unserved Load
- Reserve shortage
- Generation mix change & Variable Generation Curtailment
- Greenhous Gas Emission
- Localize Marginal Prices

WECC Anchor Datasets (ADS)

- Best available data for the western interconnection (WI): The WECC 2030 Anchor Data Set (ADS)
 - Best available projection of new generation, generation retirements, transmission assets, and load growth 10 years in the future from a given reference year (e.g., 2030, 2032)
- There are **38 functional Balancing Authorities** (BA) in the Western Interconnection.
- The WECC 2030 ADS provides a detailed nodal representation of the WI power grid topology:
 ~22k podes and ~26k transmission lines
 - ~22k nodes and ~26k transmission lines
- The WECC 2030 ADS is designed to be analyzed using PCM and Power Flow commercial software packages used widely by utility planning engineers.

Nuclear Maintenance Schedules in WI

Maintenance Schedule Cases

- i. A: all units are on
- ii. B: all units are off (creating 64.79 TWh generation loss)
- iii. C: extended schedule 2024 (8.57 TWh generation loss)
- iv. D: extended schedule 2025 (6.65 TWh generation loss)

С	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
DiabloCanyon1												
DiabloCanyon2				3/11 -	7/30 (1	42)						
Columbia2				egular Itainance		Extend aintainan	Ce					
Palo Verde 1		2.93		loss		.64 TV		ss 📒	Tota	8. 57	TWh	loss
Palo Verde 2										10/5 -	12/31	(88)
Palo Verde 3					4/1 -	8/8 (13	0)					
D	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
DiabloCanyon1						5/5 -	9/23 (1	.42)				
DiabloCanyon2				3/15 -	7/22 (1	.30)						
Columbia2												
Palo Verde 1		1.90	TWh	loss	4	.75 TV	Wh los	SS 📒	Tota	6.65	TWh	OSS
Palo Verde 2	1/1 - 2/	19 (50)										
Palo Verde 3												

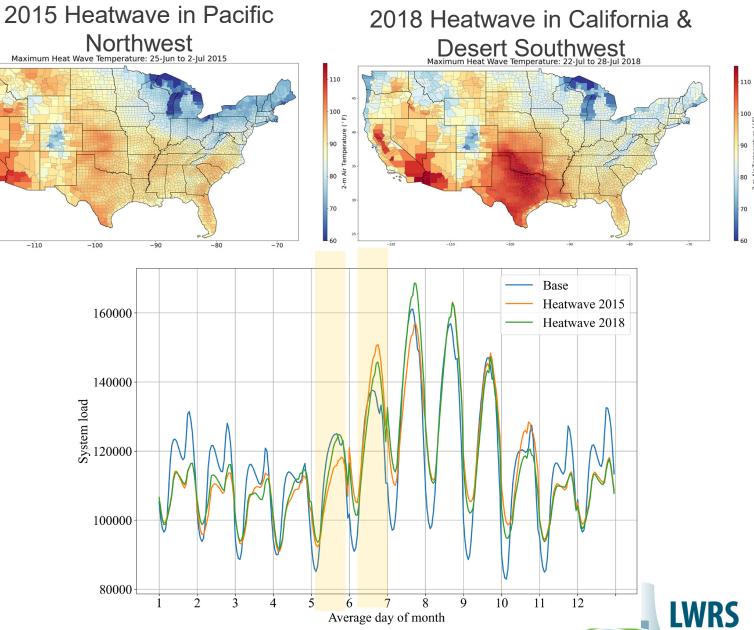
	Nuclear F	Resources		Sc	hedule C 20)24	Sc	hedule D 20	025
BA	Generator	Plant code	Capacity (MW)	Start	End	Days out	Start	End	Days out
CISO	DCPP 1	6099	1200				5/5	9/23	142
CISO	DCPP 2	6099	1200	3/11	7/30	142			
BPAT	Columbia 2	371	1185				3/15	7/22	130
SRP	Palo Verde 1	6008	1333						
SRP	Palo Verde 2	6008	1336	10/5	12/31	88			
SRP	Palo Verde 3	6008	1334	4/1	8/8	130	1/1	2/19	50

Nuclear Outage Scenarios for PCM Simulations Comparison Overview

- The comparison overview:
 - Six scenario, including base case (Scenario 1), derated hydro (Scenario 2), two heatwave (Scenarios 3 - 4) and combined (Scenarios 5 - 6)

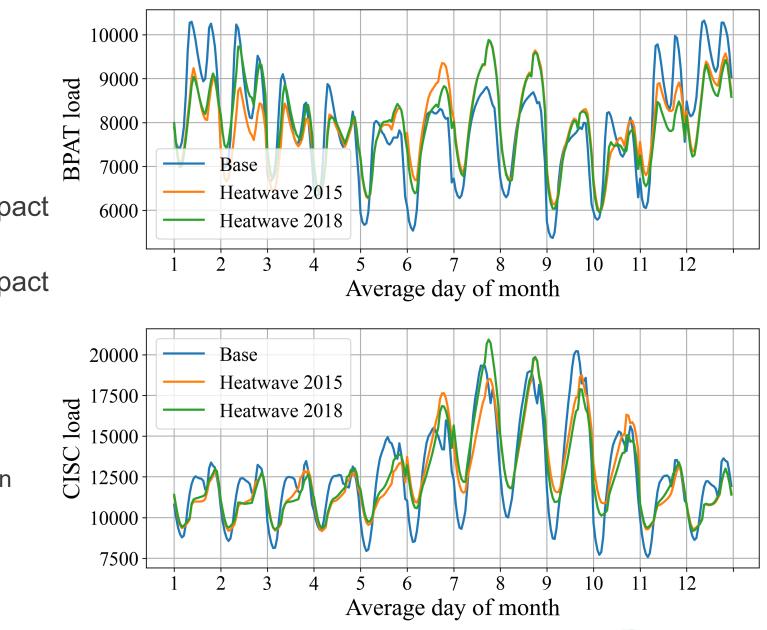
Scenario	Event	Nuclear Outage	WECC ADS Case	Load	Wind	Solar	Hydro
1	Extended Nuclear Maintenance Outage	Case 1A: Base Case* (Business as usual) Case 1B: Total Nuclear Retirement Case 1C Nuclear Maintenance Schedule A Case 1D: Nuclear Maintenance Schedule B	2030 WECC ADS (NTP case 1)	2030 WECC ADS	2030 WECC ADS	2030 WECC ADS	
2	Drought (2001 hydro weekly dispatch)	Case 2A: Base Case (Business as usual) Case 2B: Total Nuclear Retirement Case 2C Nuclear Maintenance Schedule A Case 2D: Nuclear Maintenance Schedule B	2030 WECC ADS (NTP case 1)	2030 WECC ADS	2030 WECC ADS	2030 WECC ADS	DerateHydro PNNL 2001
3	Heatwave 1 (2015 NW heatwave)	Case 3A: Base Case (Business as usual) Case 3B: Total Nuclear Retirement Case 3C Nuclear Maintenance Schedule A Case 3D: Nuclear Maintenance Schedule B	2030 WECC ADS	2030 WECC using 2015 weather profile	2030 WECC ADS	2030 WECC ADS	
4	Heatwave 2 (2018 CA heatwave)	Case 4A: Base Case (Business as usual) Case 4B: Total Nuclear Retirement Case 4C Nuclear Maintenance Schedule A Case 4D: Nuclear Maintenance Schedule B	2030 WECC ADS	2030 WECC using 2018 weather profile	2030 WECC ADS	2030 WECC ADS	
5	Drought + Heatwave 1	Case 5A: Base Case (Business as usual) Case 5B: Total Nuclear Retirement Case 5C Nuclear Maintenance Schedule A Case 5D: Nuclear Maintenance Schedule B	2030 WECC ADS	2030 WECC using 2015 weather profile	2030 WECC ADS	2030 WECC ADS	DerateHydro PNNL 2001
6	Drought + Heatwave 2	Case 6A: Base Case (Business as usual) Case 6B: Total Nuclear Retirement Case 6C Nuclear Maintenance Schedule A Case 6D: Nuclear Maintenance Schedule B	2030 WECC ADS	2030 WECC using 2018 weather profile	2030 WECC ADS	2030 WECC ADS	DerateHydro PNNL 2001

*Nuclear Maintenance Schedules A: using expected BAU schedule in year 2024, plus additional 90 days as extended maintenance outage *Nuclear Maintenance Schedules B: using expected BAU schedule in year 2025, plus additional 90 days as extended maintenance outage


Evaluate Nuclear Power Plants Role During Extreme Weather Events

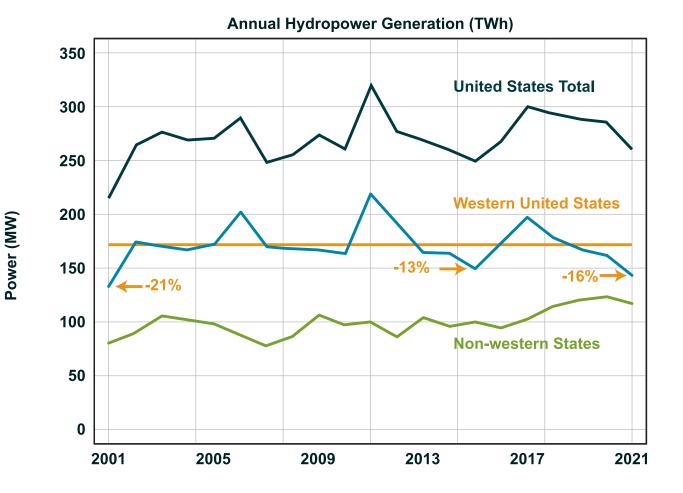
Load Models

- Load
 - Base
 - 2030 WECC
 - 2015 heatwave using
 Total Electricity Loads
 Model (TELL)
 - 2030 WECC load shaped by a 2015 heatwave weather profile


-120

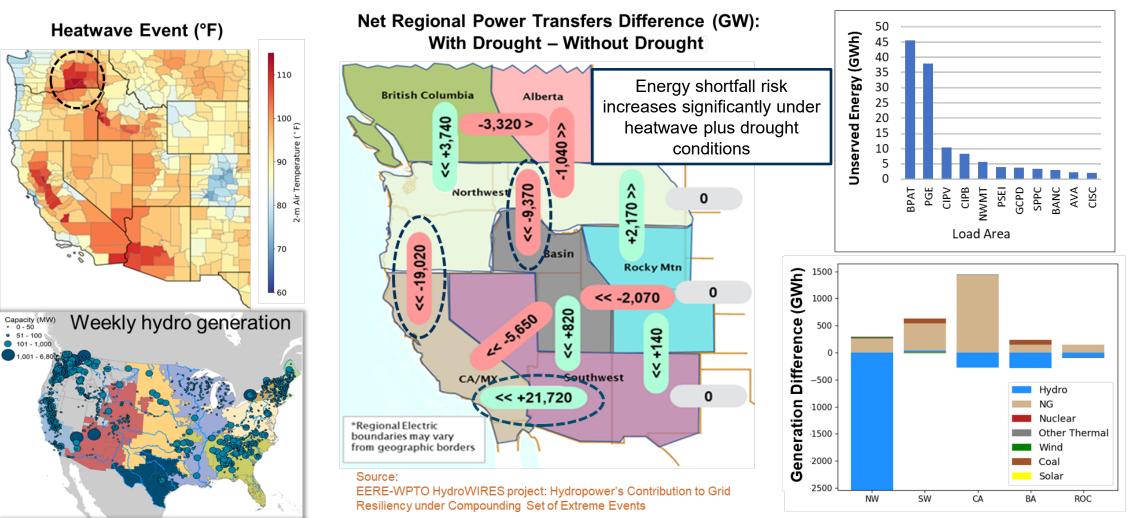
- 2018 heatwave
 - 2030 WECC load shaped by 2018 heatwave weather profile
- Average day of month

Load in CISC and BPAT


- Heatwave 2015 has a higher impact in NW region
- Heatwave 2018 has a higher impact in CA region
- Heatwave load example:
 - BPAT
 - Bonneville Power Administration
 - CISC
 - Southern California Edison

Derated Hydro 2001

- The year 2001 shows the most severe drought, with a hydropower reduction of 21%.
 - The 2001 drought began with exceptionally low precipitation and snow accumulation in the fall and winter of 2000, leading to near record low springtime flows in the Columbia River, which is home to approximately two-thirds of western hydropower generating capacity



Evaluate Nuclear Power Plants Role During Extreme Weather Events

PCM Study Example: Impact of drought and heatwave on Power System Reliability

• 51 - 100

1.001 - 6

Unserved Load: BAU maintenance A

Scenario

- S1: base
- S2: Drought 2001
- S3: Heatwave 2015
- S4: Heatwave 2018
- S5: S2+S3
- S6: S2+S4
- Nuclear maintenance
 - A: base case

Avail.	Region			Sc	enario		
Avall.	Region	Base	2001 Drought	3	4	5	6
	Basin	_	_	_	5	1,045	7,577
	California	_	953	243	4,361	31,999	147,520
Α	Northwest	_	361	_	690	2,085	46,144
	Rocky Mtn	_	5	138	2,349	10,237	29,042
	Southwest	_	57	704	10,120	13,755	56,571
Α	Total	_	1,376	1,085	17,524	59,121	286,855
A	N. homes	-	131	103	1,669	5,631	27,320

- The system is capable of supplying its load under normal conditions Scenario 1.
- The scenarios considering drought, heat wave, and heat wave with drought are unable to supply its complete load.
- Drought + heatwave + nuclear outage could cause up to 27k households lose power: the estimation of number of homes is computed by dividing the total unserved load by 10.5, the yearly electricity consumption

Unserved Load:

Scenario

- S2: Drought 2001
- S3: Heatwave 2015
- S4: Heatwave 2018
- S5: S2+S3
- S6: S2+S4
- Nuclear maintenance
 - B: total nuclear retirement (64.79 TWh generation loss)
 - C: extended schedule 2024 (8.57 TWh generation loss)
 - D: extended schedule 2025 (6.65 TWh generation loss)

Avail.	Region			Scer	nario		
Avan.	Region	1	2	3	4	5	6
	Basin	4	607	2,226	4,429	11,993	32,281
	California	3,431	39,789	49,808	87,218	246,356	370,296
В	Northwest	1,845	4,617	4,245	11,452	61,521	211,792
	Rocky Mtn	5	2,486	8,586	20,409	33,435	62,960
	Southwest	625	13,306	23,536	53,494	87,981	177,966
В	Total	5,910	60,806	88,401	177,001	441,286	855,295
В	N. homes	563	5,791	8,419	16,857	42,027	81,457
	Basin	-	-	-	388	1,200	4,368
	California	-	-121	-208	7,452	16,763	64,171
С	Northwest	-	-	-	70	5,292	33,766
	Rocky Mtn	-	-	453	1,836	2,472	6,906
	Southwest	-	0	310	5,238	5,101	29,650
С	Total	_	-121	555	14,985	30,827	138,861
C	N. homes	-	-12	53	1,427	2,936	13,225
	Basin	-	_	_	336	1,454	2,852
	California	-	805	2	6,372	20,281	57,344
D	Northwest	_	120	-	408	7,276	27,563
	Rocky Mtn	-	81	924	2,658	3,147	6,286
	Southwest	-	60	877	1,893	7,621	16,679
D	Total	-	1,066	1,803	11,666	39,779	110,724
D	N. homes	-	102	172	1,111	3,788	10,545

• The values have been subtracted from the nuclear availability Schedule A to present the values dependent on the nuclear availability

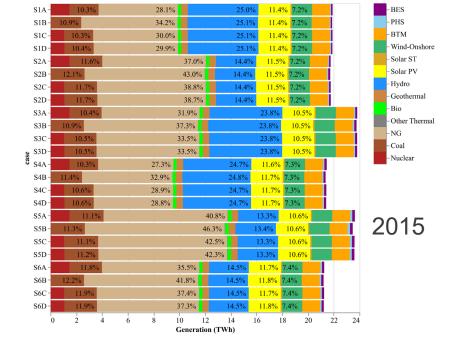
- The scenarios considering drought, heat wave, and heat wave with drought are unable to supply its complete load.
- Unserved load decreased even though nuclear availability was lower in schedule C due to co-optimization.

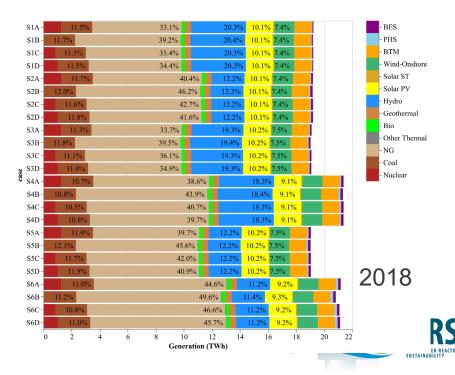
Reserves: Unmet regulation up

- Unmet reserve is measured by the difference between the reserve requirements and actual deployments, a higher reserve shortage value indicates a more stressed grid condition
- The smallest percentual increase is from Scenario 1 nuclear availability Schedule C of 5% and the maximum percentual increase is from Scenario 1 nuclear availability Schedule B of 355%.
- The largest increase on unmet *regulation up* is Scenario 5 nuclear availability Schedule B of 213 GW

Nuclear				Sce	nario		
Availabili ty	Region	1	2	3	4	5	6
	Basin	0.92	7.05	7.91	11.71	29.98	35.61
	California	0.02	0.71	0.29	0.67	3.79	9.01
Α	Northwest	3.77	12.69	5.62	6.77	23.91	25.42
	Rocky Mtn	2.25	11.58	23.07	28.54	48.35	57.52
	Southwest	2.41	19.92	18.80	33.82	73.65	95.02

Nuclear				Sce	nario		
Availabili ty	Region	1	2	3	4	5	6
	Basin	4.65	15.30	18.47	18.01	35.49	30.89
	California	0.20	3.01	1.63	2.12	10.66	9.13
В	Northwest	1.30	6.73	6.12	7.84	18.60	13.31
	Rocky Mtn	11.39	22.43	35.26	31.16	53.37	50.57
	Southwest	15.69	48.53	43.63	51.64	94.87	89.04
В	Total	33.24	96.00	105.11	110.78	212.98	192.94
D	Increase	355%	185%	189%	136%	119%	87%
	Basin	0.06	2.20	1.43	1.33	4.07	5.14
	California	0.03	0.11	0.12	0.33	1.31	1.88
С	Northwest	0.03	0.50	0.23	1.10	2.10	2.91
	Rocky Mtn	0.53	5.31	4.90	6.40	11.88	10.33
	Southwest	-0.19	9.60	2.26	7.80	14.44	18.59
С	Total	0.45	17.71	8.95	16.95	33.79	38.85
	Increase	5%	34%	16%	21%	19%	17%
	Basin	0.17	2.89	2.48	2.15	6.42	6.02
	California	0.03	0.13	0.21	0.30	1.27	1.50
D	Northwest	0.04	0.74	0.77	1.62	2.60	2.68
	Rocky Mtn	0.62	4.34	2.95	4.07	8.72	8.13
	Southwest	0.35	8.13	3.89	7.38	12.80	15.65
D	Total	1.20	16.23	10.30	15.52	31.81	33.98
	Increase	13%	31%	18%	19%	18%	15%

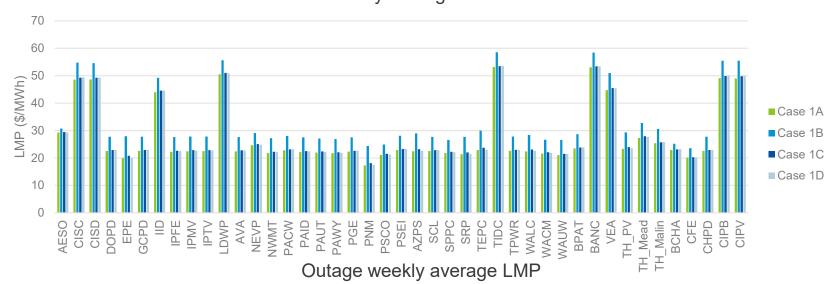

Generation Mix of the entire year

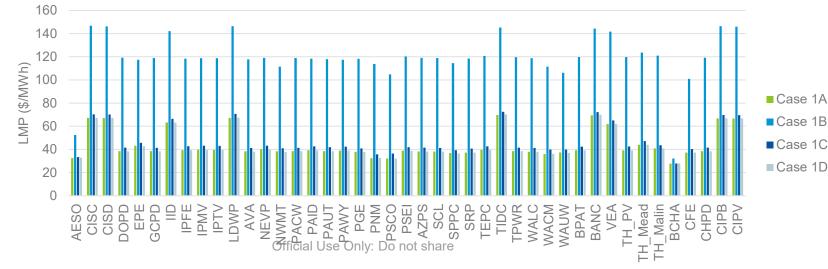

- Nuclear and nuclear are mostly replaced with NG, causing more green gas emissions
- The curtailment of solar and wind generation slightly decreases when nuclear and hydro power availability is reduced.

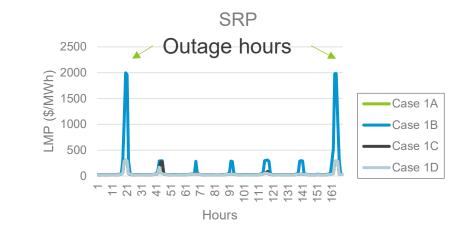
	S1A-	7.7%	10.2%				2	7.8%	ó				19.	.7%	1	<mark>0.1%</mark>		11.	7%	7.1%	6			-BES		
	S1B-	11.1%					34	4.2%					19.	8%	1	0.3%	Ē	11.	8%	7.1%	6			- PHS		
	S1C-		0.3%				2	8.7%	ó				19.	7%	1	0.1%		11.	7%	7.1%	6			-BTM		
	S1D-		10.2%				2	8.5%	ó				19.	.7%	1	0.1%		11.	7%	7.1%	6			- Wind-O	Inshore	;
	S2A-	7.7%	10.6%	ó				30	.9%				16.	0%	1	0.2%		11.	8%	7.1%	6			– Solar S	Т	
	S2B-	11.5%						37.	.3%				16.0	0%	10).3%		11.	8%	7.1%	ó			– Solar P	V	
	S2C-		10.7%					31	.8%				16.	0%	1	0.2%		11.	8%	7.1%	6			- Hydro		
	S2D-		10.7%					31	.6%				16.	0%	1	0.2%		11.	8%	7.1%	6			- Geothe	rmal	
	S3A-	7.6%	9.8%				2	.8.6%	6				19	.7%	9	9.9%		11	.6%	7.1%	%			-Bio		
	S3B-	10.9%					34	4.6%	5				19.	7%	1	0.1%		11.	7%	7.1%	6			- Other T	hermal	
	S3C-	9	9.9%				2	9.4%	6				19	.7%	9	9.9 %		11.	6%	7.1%	/o			-NG		
se	S3D-		9.9%				2	9.2%	6				19	.7%	9	9.9%		11.	.6%	7.1%	/o			-Coal		
case	S4A-	7.6%	9.8%				2	8.5%	6				19	.7%	9	9.9%		11.	.6%	7.1%	/o			- Nuclea		
	S4B-	10.9%					34	4.5%	5				19.	7%	1	<mark>0.1%</mark>		11.	7%	7.1%	6					
	S4C-	9	9.9%				2	9.3%	6				19	.7%	9	9.9%		11.	7%	7.1%	<mark>⁄₀</mark>					
	S4D-		9.8%				2	9.2%	6				19	.7%	9	9.9%		11.	7%	7.1%	<mark>⁄₀</mark>					
	S5A-	7.6%	10.3%					31	.5%				15.	.9%	9	9.9%		11.	7%	7.1%	6					
	S5B-	11.3%						37	.6%				16.	0%	10).2%		11.	8%	7.1%	ó					
	S5C-		0.4%					32	2.4%				15.	.9%	1	<mark>0.0%</mark>		11.	7%	7.1%	6					
	S5D-		10.3%					32	2.2%				15.	.9%	1	<mark>0.0%</mark>		11.	7%	7.1%	6					
	S6A-	7.6%	10.3%					31	.4%				15.	.9%	1	<mark>0.0%</mark>		11.	7%	7.1%	6					
	S6B-	11.3%						37.	.5%				16.0	0%	10).2%		11.	3%	7.1%	, D					
	S6C-	1	10.4%					32	.2%				15.	9%	1	<mark>0.0%</mark>		11.	7%	7.1%	6					
	S6D-		10.3%					32	2.1%				15.	.9%	1	<mark>0.0%</mark>		11.	7%	7.1%	6					
	200	0 50	100 1	.50 20	0 2:	50 3	00		40(Gene					50	600	650) 7(00	750	800) 8:	50		BES		
					_												_	_		Ξ.	_			PHS		
(u o	150-																							BTM		
CO2 (T metric ton)																								Wind-Ons	hore	
met	100 -																							Solar ST		
Ľ																								Solar PV		
CO	50																							Hydro	.1	
	50-																							Geotherma	11	
																								·Bio ·Other The	məl	
	0			~		-	-			- -	-	~		-	- 1	~ ~			-	~ '				NG	mai	_
		S1A S1B	IIS	S2/ S2I	S2(S2I	S3A	S3B	S3C	23D		S4I	S4C	S4I	S5A	S5I	SSC	SSI	S6A	S6B	S6C	S6D		Coal		
										cas	e													Nuclear	EAG	ст
																							_			

One week generation Mix during heatwave

- The 2015 heat wave effect is expected during the period from 2030-06-25 to 2030-07-02
- The 2018 heat wave effect is expected during the period from 2030-07-22 to 2030-07-28
- Nuclear is mostly replaced with NG, and Scenarios 5 and 6 exhibit a larger dependency in NG due to loss of hydro
- The curtailment of solar and wind generation slightly decreases when nuclear and hydro power availability is reduced.

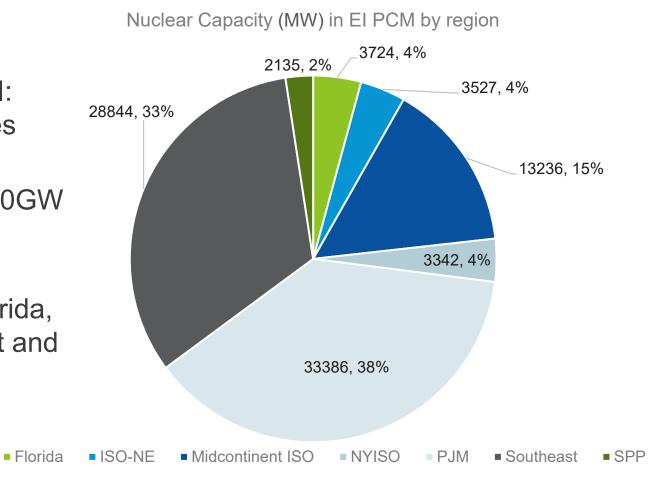





Scenario 1 Cases Comparison: LMP Yearly average LMP

WRS

- Nuclear units shut down (Case 1B) leads to higher LMP, even reaches 2000 \$/MWh in SRP/CIPV/BPAT during the outage hours
- Extended maintenance (Case 1C and 1D) doesn't increase unserved load but incur slightly higher LMP costs in most areas



Summary/Key takeaways on WI

- Historical NRC data shows that the majority of generation units in nuclear power plants are operating at full capacity as base load units, with bi-annual or 18-month cycles with several weeks of down time for maintenance/refueling
- PCM simulations shows that in the Western Interconnect, unplanned nuclear retirements would create:
 - unserved load during peak load summer days,
 - higher LMP in the retirement area as nuclear generation replaced by high marginal cost gas units,
 - overall higher generation cost compared to the business as usual case
 - shortage in reserves
 - Higher greenhouse gas emissions
- Extended nuclear maintenance leads to higher LMP, generation cost, and green house gas emissions without significantly increasing in unserved load and reserve shortage compared with base case due to relatively small% percentage of total generation capacity in WI is nuclear

2025 EI PCM

- Eastern Interconnection Area:
 - A much larger system compared with WI:
 ~95k nodes and ~119k transmission lines (~22k nodes and ~26k in WI)
 - The EI has 86 unclear units and over 100GW installed capacity including Canadian generators (6 units, 7.6 GW in WI)
 - Focus on 7 regions rather than BAs: Florida, ISO-NE, MISO, NYISO, PJM, Southeast and SPP
 - Scenario development similar to WECC

Installed capacity: WI vs EI

	WI AD	S 2030	El 2	025
Туре	Capacity (MW)	Percentage (%)	Capacity (MW)	Percentage (%)
Coal	14,975	5.77	100,559	12.26
Nuclear	8,175	3.15	88,194	10.75
Gas	78,489	30.27	362,486	44.18
Other	37,412	14.43	93,915	11.45
Hydro	49,761	19.19	51,138	6.23
Wind	31,188	12.03	78,774	9.60
Solar	39,331	15.17	45,480	5.54
Peak load	152,850	-	575,520	-
Total	259,331	100.0	820,546	100.0
Total controllable				
resources	139,051	53.62	645,154	78.62
Over install	106,480	69.66	245,026	42.57
Over install controllable	(13,799)	(9.03)	69,634	12.10

El has approximately 12% installed capacity of controllable units above its peak base load, while WI has about 9% below its peak base load.

Consequently, this leads to greater challenges for WI in flexibly adjusting its supply to meet reserve and energy demands

Nuclear Outage Scenarios for El PCM Simulations

	Base	Case: El 2025 PCM case modified	l from 2031 PN	INL EI PCM	
Scenario	Event	Nuclear Outage	El Case	Load	Wind/Solar
7	Extended Nuclear Maintenance Outage	Case 7A: Base Case* (Business as usual) Case 7C: Nuclear Maintenance Schedule A Case 7D: Nuclear Maintenance Schedule B	EI 2025 PCM	EI 2025 PCM	2025 EI PCM
8	Heatwave 1 (2015 heatwave)	Case 8A: Base Case (Business as usual) Case 8C: Nuclear Maintenance Schedule A Case 8D: Nuclear Maintenance Schedule B	EI 2025 PCM	EI 2025 PCM using TELL 2015 weather profile	2025 EI PCM
9	Heatwave 2 (2018 heatwave)	Case 9A: Base Case (Business as usual) Case 9C: Nuclear Maintenance Schedule A Case 9D: Nuclear Maintenance Schedule B	EI 2025 PCM	EI 2025 PCM using TELL 2018 weather profile	2025 EI PCM

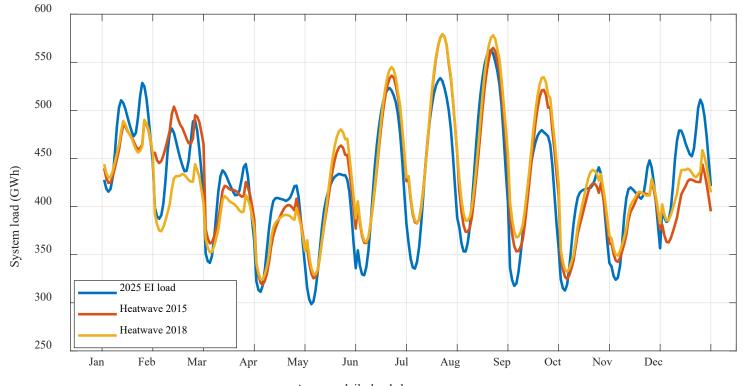
*Cases 7B, 8B, and 9B (fully unavailability of nuclear) are not applicable in EI system

*Nuclear Maintenance Schedules A: using expected BAU schedule in year 2025, plus additional 90 days as extended maintenance outage *Nuclear Maintenance Schedules B: using expected BAU schedule in year 2026, plus additional 90 days as extended maintenance outage

*Base Case: EI 2025 PCM leverages available databases to adjust transmission, load, and generation capacity to reflect 2025 system conditions.

Nuclear Maintenance Schedules in El

Maintenance Schedule Cases


- i. A: business as usual (44.7 TWh generation loss)
- ii. C: extended schedule 2025 (124.8 TWh generation loss)
- iii. D: extended schedule 2026 (146.5 TWh generation loss)

MISO, PJM, and Southeast have different generation loss in these two extended maintenance schedules since most nuclear units' maintenance cycles are from 18 to 24 months

Nuclear	r Resources	s in El	E	tended Sch	edule in 202	5	Extended Schedule in 2026					
Region in El PCM	Count of units	Capacity (MW)	Units scheduled in Spring	Units scheduled in Fall	Units w/o schedule	Energy generation loss (TWh)	Units scheduled in Spring	Units schedul ed in Fall	Units w/o schedule	Energy generation loss (TWh)		
Florida	4	3,724	1	2	1	5	1	1	2	7.8		
ISO-NE	3	3,527	0	2	1	4.1	1	0	2	9.5		
MISO	14	13,236	3	3	8	21	5	3	6	23		
NYISO	4	3,342	1	2	1	1.8	1	0	3	7.6		
PJM	31	33,386	12	7	12	52.2	10	8	13	48.3		
Southeast	27	28,844	8	9	10	37.5	8	6	13	48.4		
SPP	2	2,135	1	1	0	3.2	0	1	1	1.9		
Total	85	88,194	26	26	33	124.8	26	19	40	146.5		

Load in El

- Heatwave 2015
- Heatwave 2018

Average daily load shape

Cases Comparison: Unserved Load

	Nuclear Availability		А			С			D	
	Scenario	7	8	9	7	8	9	7	8	9
Region	Florida	-	-	-	-	-	-	537	537	537
	ISO-NE	-	-	-	-	-	-	-	-	-
	MAPP (Non- MISO)	-	-	-	-	-	-	446	434	447
	MISO	-	-	-	-	-	-	53	202	168
	NYISO	-	-	-	-	-	-	-	-	-
	PJM	-	-	-	-	-	-	-	-	-
	SPP	-	-	-	-	-	-	34	42	36
	Southeast	-	-	-	-	-	-	-	-	-
System	Total	-	-	-	-	-	-	1,069	1,215	1,188
	N. homes year	-	-	-	-	-	-	102	116	113
	N. homes month	-	-	-	-	-	-	1,221	1,388	1,358

Unserved load

- The system can supply its load under BAU nuclear maintenance A and extended maintenance C nuclear normal weather conditions or heatwaves.
- The nuclear availability D has the largest amount of nuclear unavailability for the month of June and will cause unserved load up to 1300 homes.
- The heat wave scenario increases slightly the amount of unserved load

Cases Comparison: Unmet Reserves

Number of hours the unmet *spinning reserve* by violation severity levels (VSL).

Nuclear Availability	Scenario	SPP	Southeast	Florida	Midcontine nt ISO	PJM	Total
	7	3	1	0	0	0	4
Α	8	3	0	0	0	0	3
	9	0	0	0	0	0	0
	7	20	17	13	16	0	66
С	8	20	18	13	17	0	68
	9	20	18	13	17	0	68
	7	31	28	24	26	8	117
D	8	31	28	24	27	8	118
	9	31	28	24	27	8	118

- The number of hours the unmet reserve are calculated by hours multiply violation severity levels (VSL)
- Different VSL levels of "Lower", "Moderate", "High", and "Severe" by considering the weight of 1, 2, 3, and 4
- The nuclear availability has a larger implication on the number of hours with unmet spinning reserve than the heat wave scenarios, and maintenance schedule D has a higher impact on the system compared with schedule C

case

CO2 (T metric ton)

Cases Comparison: Generation Mix and Emissions

-Others

-BES

- PHS - BTM

- Wind

- Solar

Hydro

NG

-Coal

-Nuclear

Other Thermal

٠

٠

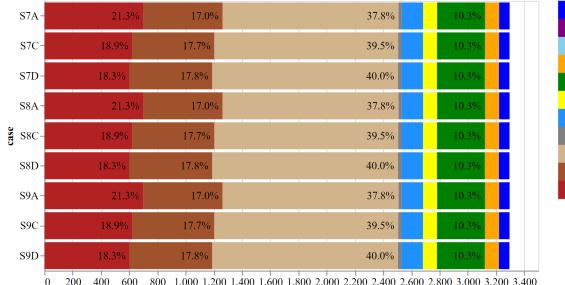
Others

BES

PHS

-BTM

Wind


-Solar

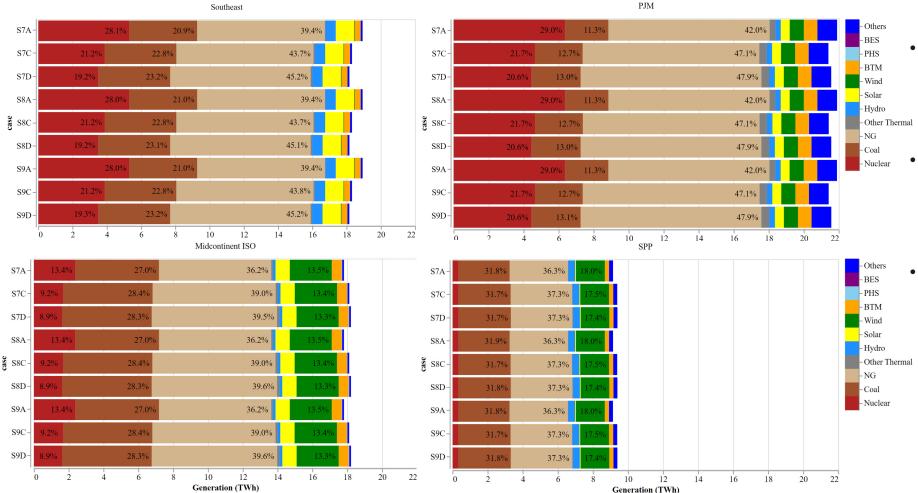
Hydro

-NG

-Coal -Nuclear

-Other Thermal

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400 Generation (TWh)


1,200 2.0 1,000 1.5 (in 1) 1.(NOX (I metric ton) 1.(0.5-**SO2 (T metric ton)** 800 600 1.0-400 200 0.0 0.0- 88A -- A92 - 88A -S7A S7D. S8C-S8D-S9C-S9D-S7D-S8D-S9D-S7A-S7C-S7D-S8C-S8D-- Y6S S9D-S7C S7C-S8A S8C S9A. S7A

case

- The extended nuclear maintenance Scenarios C and D present as expected reduced nuclear generation, which is mostly replaced by thermal units, resulting in increased emissions
- The solar and wind generation remain the same despite the nuclear generation and load demand are changed

Cases Comparison: Generation Mix and Emissions of Southeast, PJM, MISO, and SPP

Total generation of Southeast and
PJM region decreases in Scenarios
C and D, indicating extra energy
import needed from other regions
during extended maintenance event
Total generation of Midcontinent ISO
region increases in Scenarios C and
D, indicating additional energy
export to other regions during
extended maintenance events.
Other several regions, e.g., SPP,
increases thermal generation to

increase thermal generation to support other regions during extended maintenance event

Summary/Key takeaways on El

The EI is a more robust system compared to WI due to a larger installed capacity of controllable units in relation to their peak base load. In the EI, the reduction of nuclear availability and heat wave conditions would create:

- Increased shortage in reserves
- Slightly increased unserved load during peak load summer days in several regions
- Higher generation cost compared to the BAU case as nuclear generation is replaced by high-marginal cost thermal units and more greenhouse gas emissions
- Changed generation mix and total energy generated on major regions in EI, indicating the nuclear availability's impact on interregional energy imports/exports.
- The extended nuclear availability schedule C/D demonstrated to be more impactful to stress the EI than the heat wave events.
- The EI during nuclear availability schedule D is the only type with unserved energy. The unmet reserves hours increase significantly with nuclear availability C/D.

What's next

- Hydrogen Hight temperature electrolysis flexibility
- Consideration of reserve market and operational capability

Sustaining National Nuclear Assets

lwrs.inl.gov

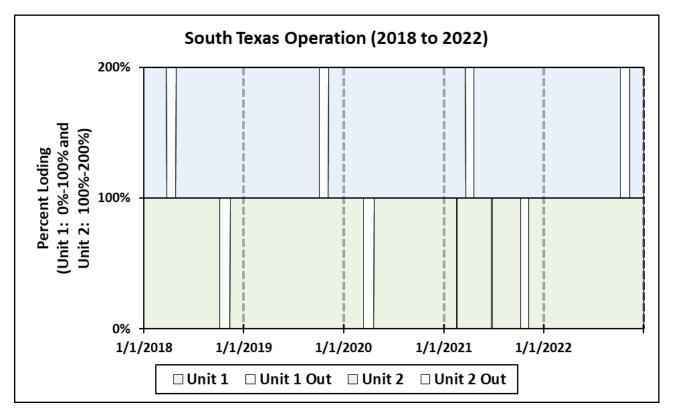
Total and Nuclear installed Capacity by NERC Region

NERC Region	Total Capacity GW	Nuclear (GW)	Nuclear %	
RFC	249	35	14	
NPCC*	82	10	12	
SERC	370	42	11	
MRO	142	5	3	
Eastern Interconnect	850	91	11	
TRE	113	5	5	
WECC	234	8	3	

* NPCC Not including Ontario or hydro-Quebec

NRC Nuclear Power Plants Outage/Maintenance Analysis

- Re-fueling drives nuclear maintenance. Nuclear maintenance pattern can be determined based on historic operation
- Historic daily operation is obtained from NRC "Power Reactor Status Report". It show reactor loading.
 - https://www.nrc.gov/reading-rm/doc-collections/event-status/reactor-status/index.html
- The NRC data was processed to determine the maintenance cycle:
 - Nuclear units re-fueling/maintenance cycles are typically on an eighteen-month or two-year cycle (Data from 2005 through 2022 was processed)
 - Maintenance event was identified as either spring, fall, or none for each year
- Nuclear maintenance cycle was extended from 2022 to 2027 (spring, fall, or none)
- The average start day of the year and duration was calculated for spring and fall events



Outage due to Maintenance Examples

- Re-fueling drives nuclear maintenance
- Nuclear re-fueling are typically on an eighteen month or two-year cycle
- South Texas is on an eighteen month

Maintenance Cycle						
	18 Month 2 Year					
Yr n	Spring	Spring	Fall			
Yr n+1	Fall	None	None			
Yr n+2	None	Spring	Fall			
Yr n+3	Spring	None	None			

South Texas Re-Fueling Cycle								
	2018 2019 2020 2021 2022							
Unit 2	Spring	Fall	None	Spring	Fall			
Unit 1 Fall None Spring Fall None								

Data from NRC Reactor Daily Status Report

Note: Unit 1 had two forced outage events in 2021