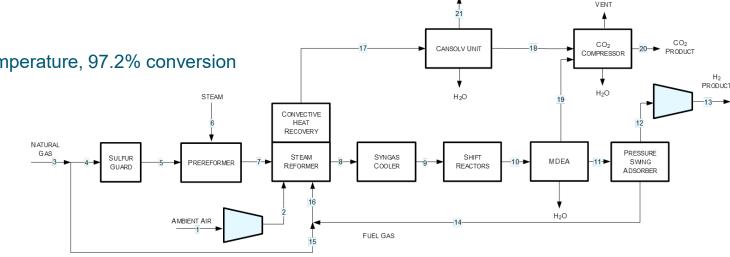


Dan Wendt, Senior Chemical Engineer March 18, 2025

Electrolysis Technology and Hydrogen Production Costs

FPOG Stakeholder Meeting



Hydrogen Production via Natural Gas SMR w/CCS

- Feedstock: Natural Gas
- Reforming: Pre-reformer and single-train, vertical tube steam methane reformer (externally heated)
- Plant Capacity: 483 metric tonnes H₂ per day
- H₂ Product Purity: 99.90 vol%
- Water Gas Shift: 2x3 train configuration, high-temperature, 97.2% conversion
- H₂ Purification: Pressure Swing Adsorption
- PSA Off-Gas: Recycled as reformer fuel
- Sulfur Control: Zinc Oxide Guard Bed
- NO_x Control: Low-NO_x Burners
- Particulate Control: N/A
- Mercury Control: N/A
- CO₂ Control: MDEA and Cansolv
- CO₂ Storage: Off-site Saline Formation

Key parameters

Steam/carbon ratio (mol/mol)	2.451	
Feed rate (kJ/h)	3,562,464,762	3,946,977,698 LHV, HHV
Feed rate (kW)	989,574	1,096,383 LHV, HHV
Feed rate (mmBTU/h)	3,377	3,741 LHV, HHV
Product rate (kJ/h)	2,407,863,465	2,846,011,654 LHV, HHV
Product rate (kW)	668,851	790,559 LHV, HHV
Product rate (kg/day)	483,000	
Carbon feed rate (mol/h)	4,538,952	
Carbon sequestering rate (mol/h)	4,370,814	
Carbon sequestration fraction (%)	96.3%	
SMR carbon reforming rate	78.9%	
Shift CO conversion rate	97.2%	
Fuel use (mmBTU, LHV/kg H ₂)	0.1678	
Raw water withdrawal (gal/min)	2,727	Source: Lewis, E. e
Raw water withdrawal (gal/kg H₂)	8.1302	Fossil Based Hydro
Electricity use (kW)	30,240	DOE/NETL-2022/3
Electricity use (kWh/kg H ₂)	1.5026	

Pre-reformer

Note: Block Flow Diagram is not intended to represent a complete material balance. Only major process streams and equipment are shown. $C_2H_6 + 2H_2O \leftrightarrow 2CO + 5H_2; \Delta H^{\circ}_{rxn} = 346.4 \text{ kJ/mol}$ $C_3H_8 + 3H_2O \leftrightarrow 3CO + 7H_2; \Delta H^{\circ}_{rxn} = 498.6 \text{ kJ/mol}$ $C_4H_{10} + 4H_2O \leftrightarrow 4CO + 9H_2; \Delta H^{\circ}_{rxn} = 651.0 \text{ kJ/mol}$ $CO + 3H_2 \leftrightarrow CH_4 + H_2O; \Delta H^{\circ}_{rxn} = -205.8 \text{ kJ/mol}$

 $CO + H_2O \leftrightarrow CO_2 + H_2$; $\Delta H^{\circ}_{rxn} = -41.2 \text{ kJ/mol}$

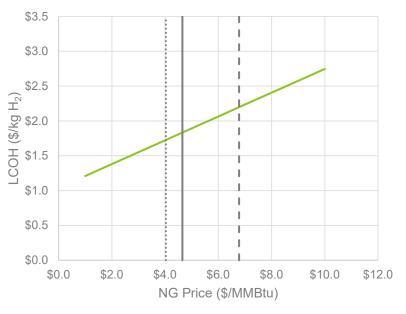
Source: Lewis, E. et al. Comparison of Commercial, State of the Art, Fossil Based Hydrogen Production Technologies. April, 2022. DOE/NETL-2022/3241

Steam Methane Reformer $CH_4 + H_2O \leftrightarrow CO + 3H_2; \Delta H^\circ_{rxn} = 205.8 \text{ kJ/mol}$

STACK

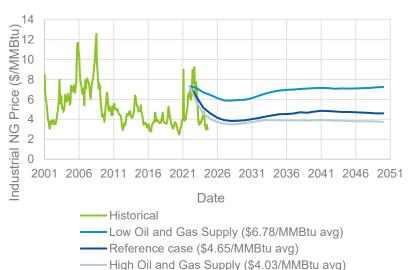

Water-Gas Shift

 $CO + H_2O \leftrightarrow CO_2 + H_2; \Delta H^{\circ}_{rxn} = -41.2 \text{ kJ/mol}$


SMR LCOH Sensitivity to NG pricing

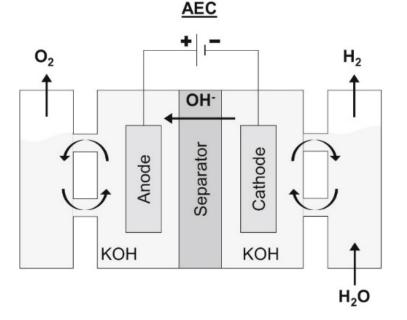
- LCOH of H₂ production via SMR is a • function of natural gas fuel price.
- NG Feedstock is largest LCOH cost • component (top left)
- Historical industrial NG prices show • considerable variation as well as a large uncertainty in future pricing, as indicated by range of EIA AEO Case projections (bottom left)
- Plot at right shows variation in LCOH for • SMR w/CCS as function of NG price.

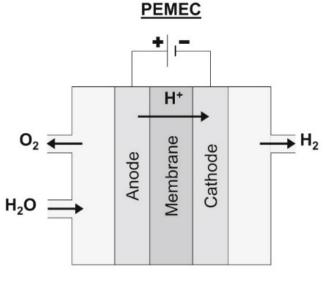
LCOH Variation with NG Price: SMR w/CCS (160 km CO₂ transport distance)

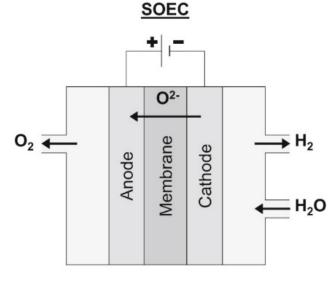


SMR w/CCS (160 km CO₂ transport) 2023 AEO High Oil & Gas Supply (\$4.03/MMBtu)

- 2023 AEO Reference Case (\$4.65/MMBtu)


- - - 2023 AEO Low Oil & Gas Supply (\$6.78/MMBtu)


Industrial Natural Gas Price



Electrolysis Hydrogen Production Technology $2 H_2 O \rightarrow 2 H_2 + O_2$

Cathode: $2 H_2 O(l) + 2e^- \rightarrow H_2(g) + 2 OH^-(aq)$ Anode: $2 OH^-(aq) \rightarrow \frac{1}{2}O_2(g) + 2e^- + H_2O(l)$

- Well-established and commercialized
- Lower capital cost
- Less operational flexibility

Anode: $H_2O(l) \to \frac{1}{2}O_2(g) + 2H^+(aq) + 2e^-$

Cathode: $2H^+(aq) + 2e^- \rightarrow H_2(g)$

- Rapid response time
- Wide operating range
- Lower durability
- Membrane materials include rare earths, e.g. platinum, iridium, gold

Cathode: $H_2O(g) + 2e^- \rightarrow H_2(g) + 0^{2-}$ Anode: $O^{2-} \rightarrow \frac{1}{2}O_2(g) + 2e^-$

- High efficiency
- Lower energy cost
- Usage of cheaper transition metal catalysts as electrode materials
- Lower TRL than low temp technologies

Electrolysis Energy Requirements

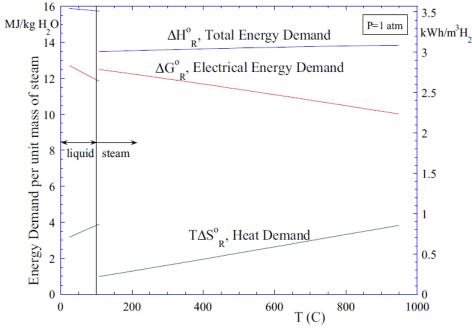
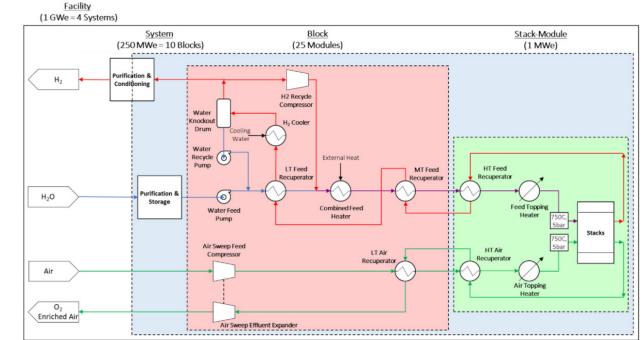


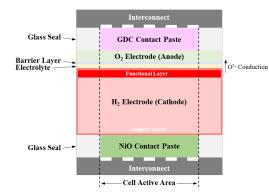
Figure 6. Standard-state energy requirements for electrolysis as a function of temperature.

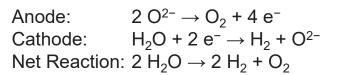
- Electrolysis electrical power requirements decrease with temperature
- Use of a low-cost heat source for vaporizing electrolysis process feedwater can reduce energy costs

Cost Analysis of Hydrogen Production by High-Temperature Solid Oxide Electrolysis


- Estimated construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water
- Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis
- Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes
- Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method

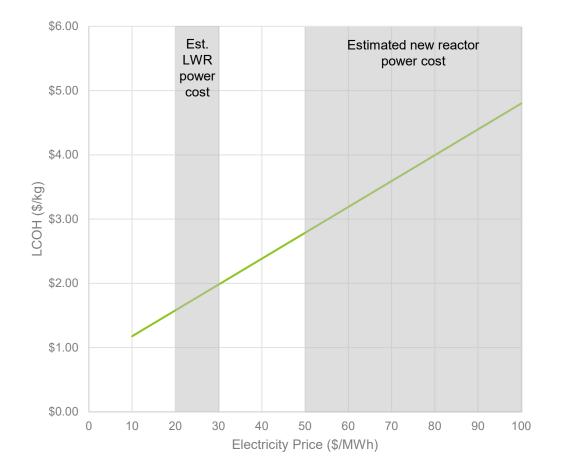
		Available online at www.sciencedirect.com ScienceDirect
ELSEVIER	jour	nal homepage: www.elsevier.com/locate/he
	-	drogen production by olid oxide electrolysis
Jacob H. Prosser Daniel S. Wendt L. Todd Knightor	^b , Micah J. (ames ^{a,*} , Brian M. Murphy ^a , Casteel ^b , Tyler L. Westover ^b ,
* Strategic Analysis, Inc.,	4075 Wilson Blud.	, Ste. 200, Arlington, VA 22203, USA Idaho Falls, ID 83415, USA
HIGHLIGHTS		
		lation costs of modular SOE facilities.
BOP equipment contrib ~36% reduction in total ~\$2/kgH ₂ for 1 GW _e DC	utes >50% of facili capital investmen	CS at production rates >500 MW, DC/year. by total capital investment. It from BOP economies of physical size. tities with \$0.025/kWh _k electricity.
BOP equipment contrib ~36% reduction in total	utes >50% of facili capital investmen modular SOE facil	<pre>ty total capital investment. tfom BOP economies of physical size. titles with \$0.025/kWh, electricity. A B S T R A C T We estimate construction and operation costs of gigawatt-scale solid oxide electro (SOC) facilities for producing high putty hydrogen gas from water. Manufacturing and sembly costs for two types of SOE cell stacks are estimated using a detailed design manufacture and assembly (DPAMs) analysis. Modular balance of plantil (BOP) pro equipment is designed and sized with Aspents, and cost estimated using equipment we quotes. Factory and on-site assembly and installand no costs for SOE stack and</pre>
BOP equipment contrib ·36% reduction in total ·\$2/kgH2 for 1 GW = DC A R T I C L E I N F O Article history: Received 23 September 2 Received in revised form 2 May 2023 Accepted 8 July 2023	uttes >50% of facil capital investmen modular SOE facil 0022 i sst 2023 g & hydrogen trolysis	ty total capital investment. t from BOP economies of physical size. tites with \$0.025/kWh _e electricity.

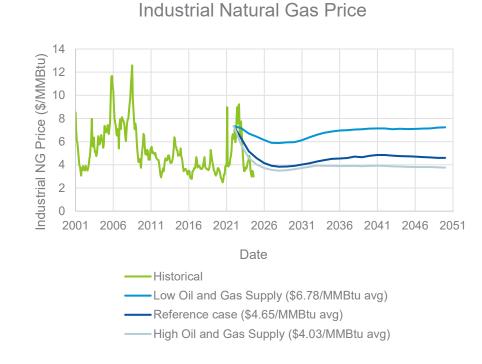

High Temperature Solid Oxide Electrolysis (SOE): Near Atmospheric Pressure Stack Design

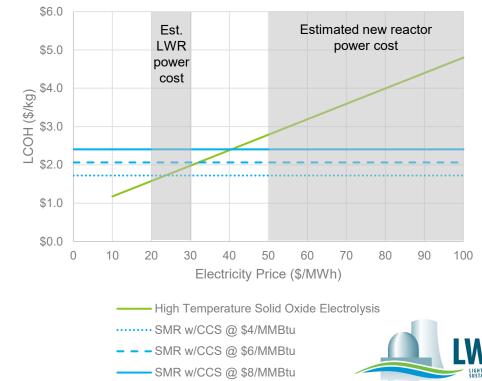

- Design Case: Near Atmospheric Pressure (NAP)
- Technology Maturity: Nth-of-a-Kind (NOAK)
- Feedstock: Water and Electric Power
- Plant Capacity: 703.5 metric tonne H₂ per day
- Facility Power: 1000 MWe
- Stack Pressure: 1.3 bara
- Stack Operating Temperature: 750°C
- Cell Architecture: Cathode Supported
- Cell Current Density: 1.5 A/cm²
- Stack Life: 4 years
- Stack Steam Utilization: 80%
- H₂ Purification: Steam condensation and Pressure Swing Adsorption
- Sulfur Control: N/A
- NOx Control: N/A
- Particulate Control: N/A
- Mercury Control: N/A
- CO₂ Control: N/A
- CO₂ Storage: N/A
- Specific Electricity Consumption: 38.7 kWhe/kgH₂
- Specific Thermal Consumption: 7.3 kWht/kgH₂
- Specific H₂O Consumption: 11.2 kgH₂O/kgH₂
- H₂ Product Purity: 99.99 mol%
- Total Capital Cost (\$2021 USD): \$668 MM (\$668/kWe)

Source: https://doi.org/10.1016/j.ijhydene.2023.07.084

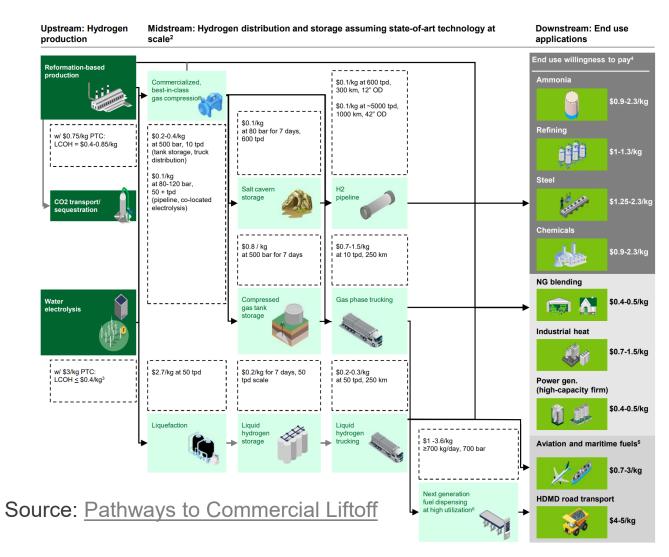
Cathode-Supported Cell




SOE LCOH: Near-Atmospheric Pressure Stack Design Case


- LCOH of SOE H₂ production is a strong function of energy price
- Existing fleet LWRs have power production costs in the range of \$20-30/MWhe, while next generation small modular nuclear reactors are expected to have power production costs in the range of \$50-100/MWhe.
- With an electric power price of \$30/MWhe and a thermal power price of \$9/MWht (approximate cost of nuclear-based low pressure industrial steam production), a GWscale NOAK SOE plant could produce H₂ at a cost of <\$2/kg

LCOH Comparison of NG SMR w/CCS and Nuclear HT SOE


- Nuclear-based high temperature electrolysis is most competitive with electricity prices <\$30/MWhe (well-aligned with existing fleet LWR power production costs) and natural gas prices >\$6/MMBtu (which is at the mid- to high-end of the recent historical NG price range).
- Analysis does not consider Inflation Reduction Act of 2022 clean hydrogen production tax credits of \$3/kg-H₂ (based on GHG of <0.45 kg-CO₂e/kg-H₂) applicable to 200 MWe of hydrogen production from eligible LWR power plants

Matching H₂ Production and Transportation Costs with Price for Selected End Use Applications

Industry Gas replacement Transport

Sustaining National Nuclear Assets

lwrs.inl.gov

Steam Methane Reforming Hydrogen emissions

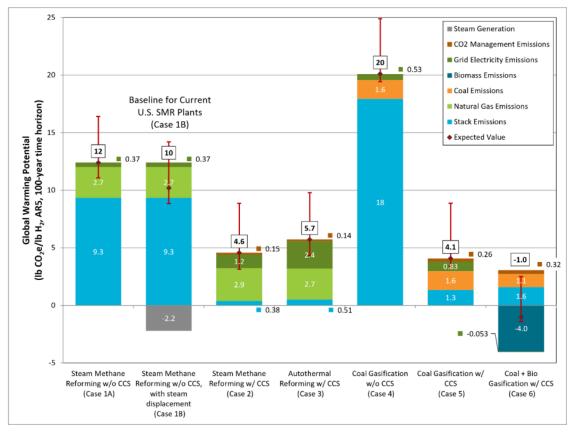


Exhibit 5-5. CO₂e life cycle emissions for all cases

- Baseline for Current U.S. SMR Plants: 10 kg_CO₂/kg_H₂
- Source: Comparison Of Commercial, State-Of-The-Art, Fossil-Based Hydrogen Production Technologies, page 270. <u>https://netl.doe.gov/projects/files/ComparisonofCommercialStateofArtFossilBasedHydrogenProductionTechnologies_041222.pdf</u>

Nuclear-based hydrogen emissions

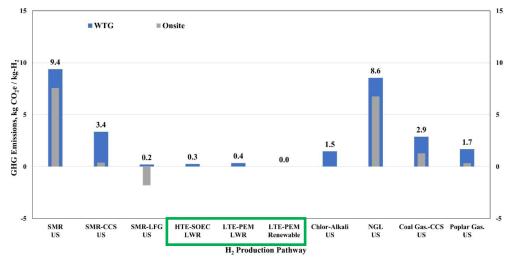


Figure 2. Well-to-gate GHG emission results for various energy sources and $\rm H_2$ production technology pathways *

Source: Elgowainy et al. "Hydrogen Life-Cycle Analysis in Support of Clean Hydrogen Production." ANL/ESIA-22/2. October 2022.

- HTE-SOEC LWR = $0.3 \text{ kg-CO}_2 \text{e/kg-H}_2$
- LTE-PEM LWR = 0.4 kg-CO₂e/kg-H₂