INL/MIS-25-84500

Svetlana Lawrence RISA Pathway Lead

April 29, 2025

Risk-Informed Systems Analysis (RISA)

LWRS Spring Program Review – Pathway Overview

Risk-Informed System Analysis (RISA)

- Objective (the what)
 - R&D to optimize safety margins and minimize uncertainties to achieve economic efficiencies while maintaining high levels of safety
- Approach (the how)
 - Provide scientific basis to better represent safety margins and factors that contribute to cost and safety
 - Develop new technologies that reduce operating costs

Expanded RISA Objectives

- Creating capabilities in advanced modeling and simulation
 - Advanced modeling and data analytics to inform condition-based equipment maintenance
- Improving plant capacity factor
 - Outage optimization project addresses the risk of outage overruns (\$1M-\$2M for each additional outage day)
- Mining for margin
 - More accurate modeling and simulation allow to reduce conservatism leading to larger safety margins
 - Larger margins enable important initiatives supporting sustainability, e.g., larger power uprates, longer refueling cycles

Power Uprates - Unprecedented Opportunity

Near-term delivery of substantial amount of reliable baseload energy. Untapped available power (historical level of uprates):

- BWRs: ~ 1,800 GWe, equivalent to ~ 2 large LWRs, or ~ 15-20 small modular reactors
- PWRs: ~3,600 GWe, equivalent to ~ 3-4 large LWRs, or ~ 30-40 small modular reactors

Near-term, cost-efficient added power from existing nuclear fleet

- Estimated costs of power uprates
 - Small uprates (MUR, < 2%): ~ \$500 \$800 / kW
 - Medium uprates (SPU, 2%-7%) ~ \$800 \$1,500kW
 - Extended power uprates (EPU, > 7%): ~ \$1,500 \$2,500 / kW
 - Very large power uprates with large plant modifications: up to \$5,000 / kW
 - Vogtle Units 3 &4: ~ \$11,000 /kW,
 - New AP1000 estimates: 8,300-10,375/kW, 6.5 8 years construction time¹
- Improved economics of plant lifetime extension for another 20 years
- An opportunity to modernize

Bridging the gap to new nuclear

- U.S. nuclear energy to triple by 2050 need to start with uprates
- Re-establishing U.S. nuclear capabilities and dominance:
 - Workforce
 - Supply chain for nuclear-grade systems and components
 - Scaled capacity of regulatory framework

Added power to produce hydrogen

- Explicitly allowed for IRA's §45V hydrogen production credit
- Hydrogen credits further strengthen the business case for power uprates

Larger Uprates Faster – the Urgent Need

Goals for the R&D:

- Enable larger-size uprates
- Demonstrate safety of power uprates
- Support economic feasibility by efficiency gains

S ENABI

Objective of Power Uprate:

Increase generating capacity as much as possible while ensuring safety and economical feasibility CONSTRAINTS

Larger Uprates Faster → SYSTEMS INTEGRATION

R&D AREAS:

- Enhanced modeling and simulation tools
 - Systems analyses
 - Fuel performance
 analyses
- Demonstration of adequate safety margins
 - Reducing
 conservatisms
 - Detailed analyses
 - Reducing uncertainties
- Artificial Intelligence and Machine learning (AI/ML) technologies
- Risk-informed licensing pathways
- Feasibility assessments
- Demonstrated case studies

Novel Approaches to Support Plant Activities

Risk-Informed Compliance

CHALLENGE

• Regulatory-required analyses of plant records are very labor-intensive with imprecise results due to human bias and errors.

RESEARCH

- Develop an approach for analysis of industry actions and events
- Develop AI-supported capability for automation of LAR preparation for large plant modifications (e.g., cycle extension, power uprate)

IMPACT

6

 Expedited and consistent process of reports preparation to support regulatory reviews → faster, cheaper LAR preparations and reviews

COLLABORATION

Over 70% of the fleet contributed data to MIRACLE database

DEPLOYMENT TIMELINE

- FY20-24 Methodology was developed and demonstrated with collaborators
- FY25 Application for automation of LARs
- FY26 Demonstrate LAR automation via a case study with collaborator

MIRACLE (*Machine Intelligence for Review and Analysis of Condition Logs and Entries*) is an artificial intelligence tool developed to automate condition report handling with natural language processing and machine learning.

Workflow of Data Processing Automation

From 2000

From NRC website: https://www.nrc.gov/reactors/operating/licensing/power-uprates.html

Advanced Methodologies

Plant Reload Optimization

CHALLENGE

• Nuclear fuel is expensive ~ 20% of total O&M costs

RESEARCH

- Development of an automated integrated multi-physics approach to core design
- Methodology for multiple-objective optimization (e.g., minimize new fuel volume and increase safety margins)

IMPACTS

- Economic gains through reduction of volume of new and spent fuel and more efficient fuel use
- Enable larger power uprates
- Improve operational flexibility (fewer down power events)

COLLABORATION

Constellation Nuclear, planned Westinghouse

DEPLOYMENT TIMELINE

- PWR: already operational, fully-integrated integrated multi-physics approach end of FY26
- ⁷ BWR: ~ end of FY28

			Reactor Core Fuel Pattern											_	Filless C					
						5	5	5	5	5							0 -20000	10	20	30
				5	5	5	4	2	4	5	5	5					-40000			
			5	5	1	1	2	2	2	1	1	5	5				-80000			
			Ŭ	-	1		-	-	-			Ŭ	Ŭ		r.		-100000			
		5	5	4	2	3	1	1	1	3	2	4	5	5			-120000			
	5	5	4	4	1	3	1	3	1	3	1	4	4	5	5		2.8			
																	2.6			
	5	1	2	1	0	4	1	4	1	4	0	1	2	1	5		2.4			
5	5	1	3	3	4	3	0	1	0	3	4	3	3	1	5	5	2			
5	4	2	1	1	1	0	3	1	3	0	1	1	1	2	4	5	1.8			
												22					1.6			
5	2	2	1	3	4	1	1	3	1	1	4	3	1	2	2	5	1.4			
5	4	2	1	1	1	0	3	1	3	0	1	1	1	2	4	5	1.2 0	10	20	30
5	5	1	3	3	4	3	0	1	0	3	4	3	3	1	5	5	1700			
																	1650			
	5	1	2	1	0	4	1	4	1	4	0	1	2	1	5		1600 E			
	5	5	4	4	1	3	1	3	1	3	1	4	4	5	5		5 1550 5 1500			
		5	5	4	2	3	1	1	1	3	2	4	5	5			1450			
		1.054															00 1400			
			5	5	1	1	2	2	2	1	1	5	5				5 1350			
				5	5	5	4	2	4	5	5	5					1300			
						5	5	-	-								1250			
						0	0	0	0	0							1200	10	20	30

0 2.0 wt.%, No BP 1 2.5 wt%, No BP 2 2.5 wt%, 16 Gd rods 3 3.2 wt.%, No BP 4 3.2 wt%, 16 Gd rods

Fitness of Pattern, Constraints, Objective

- Pin Peaking Fact

limit (L)

Novel Approaches to Support Plant Activities

Automated knowledge extraction from plant records to optimize maintenance

CHALLENGE

• Expensive operations and maintenance (O&M) of plant systems and highlyconsequential equipment failures require advanced diagnostic and prognostic techniques to reduce O&M costs and preclude unexpected failures.

RESEARCH

- Create an Artificial Systems Engineer enabled reasoning not just data processing
- Automate knowledge extraction from numerical and textual data for integrated knowledge base that mimics the process of human knowledge collection, retention, and use

IMPACTS

- Ability to detect failures before they occur \rightarrow cost savings and safety improvements
- · Knowledge retention and transfer to expedite workforce training and improve retention

COLLABORATION

Ontario Power Generation, PSEG

DEPLOYMENT TIMELINE

- FY24 Initial methodology was developed and demonstrated with collaborators
- FY25 Refinement of methodology and development of tool DACKAR 1.0 (Digital Analytics, Causal Knowledge Acquisition and Reasoning for Technical Language Processing) <u>https://github.com/idaholab/DACKAR</u>
- FY26 DACKAR 2.0 deployment with added features if automatic problem identification and explanation using Large Language Model Artificial Intelligence (LLM AI)

Connecting data to decisions

Novel Approaches to Support Plant Activities

Optimization of Plant Outage Activities

CHALLENGE

• Outages are consistently longer than scheduled causing lower capacity factors and profit loss (a day of plant not-operating costs ~ \$1M-\$2M).

RESEARCH

- Develop tools and methods to optimize plant outage activities
- Improve outage planning and execution

IMPACTS

- Minimize unforeseen outage duration overruns
- Optimize utilization of resources during outages

COLLABORATION

Ontario Power Generation

DEPLOYMENT TIMELINE

- FY24 Methodology was developed and demonstrated with collaborators
- FY25 Methodology improvements and development of a tool supporting outage performance, to be released at the end of FY
- FY26 Small addition of the capability of resource management in addition to the traditional schedule management

Example of Outage Progress Monitoring

Advanced Methodologies

Digital I&C Risk Assessment

CHALLENGE

 Urgent need for an efficient and quantified approach to risk assessment of digital I&C systems to support control room upgrades

RESEARCH

- Provide an objective, systematic, verifiable and reproducible approach for risk assessment of DI&C systems
- An integrated platform that addresses the risk triplets in DI&C systems: what can go wrong, how likely is it, what are the consequences

IMPACTS

- Support of DI&C systems regulatory approvals
- Elimination of the need for redundant systems

COLLABORATION

 Pressurized Water Reactor Owners Group (PWROG), Westinghouse, GE Hitachi, Framatome

DEPLOYMENT TIMELINE

- Methodology developed and demonstrated with collaborators
- FY25 methodology and tool refinements
- FY26 develop a software tool to support user-friendly, efficient process of risk assessments of digital I&C systems

Advanced Modeling and Simulation

Virtual Assessments of Human Actions

CHALLENGE

• Digitalization of plant operations require assessment of human actions under the new operating conditions.

RESEARCH

Demonstrate human performance with an upgraded digital system in the control room

IMPACT

• Expedite regulatory approvals of digital upgrades of safety-related systems

COLLABORATION

 Utilities (Duke Energy, Southern, APS, Constellation) and vendors (Westinghouse, Curtiss-Wright)

DEPLOYMENT TIMELINE

- FY25 Couple HUNTER to full-scope plant simulator in the Human Systems Simulation Laboratory (HSSL) at the Idaho National Laboratory
- FY26 Evaluation of virtual operator performance of existing plant against upgraded plant to identify changes in important human actions
- FY27 Development of software tools for consistent approach to evaluate human performance in digital environment or for novel applications (e.g., collocated hydrogen generation)

Human Activities | Performance

HUNTER Conceptual Framework HUNTER: Human Unimodel for Nuclear Technology to Enhance Reliability

Sustaining National Nuclear Assets

lwrs.inl.gov