

All Rights Reserved

PWR Owners Group

Westinghouse

Global Expertise • One Voice

PWROG-18068, Revision 1-A "Use of Direct Fracture Toughness for Evaluation of RPV Integrity"

Brian Hall - Westinghouse LWRS Spring meeting April 30, 2025

PWROG-18068-NP, Revision 1-A **Use of Direct Fracture Toughness for Evaluation of RPV Integrity**"

• The methodology justifies the use of direct fracture toughness data to evaluate RPV integrity as an alternative to the requirements/methods of pressurized thermal shock (PTS) (10 CFR 50.61) and pressure-temperature (P-T) limit curves (10 CFR 50, Appendix G).

• The topical report describes a methodology to:

- Generate irradiated or unirradiated ductile-brittle transition reference temperature (T_0) according to the industry consensus ASTM E1921-20 **Standard Test Method**
- Adjust the data for differences between the tested material and RPV condition using industry consensus ASTM E900-15 Standard Guide for predicting embrittlement
- Account for test result uncertainty and material variability
- Apply the data using ASME Code NRC-endorsed methods

Direct Fracture Toughness Activities

PWROG-18068-NP, Rev. 1 submitted to NRC for review in July 2021

• Provides a methodology to use fracture toughness data as an alternative to specific sections of NRC-approved topical reports for generating pressure-temperature curves

- WCAP-14040-A
- o BAW-10046A
- Applicable to all PWRs
- 25 multi-part requests for additional information received March 2022
 - A number of meetings and changes made to address NRC questions
 - Final RAI responses and PWROG-18068 markup submitted March 2024
 - Final safety evaluation (NRC method approval) received December 2024
- Parallel complimentary, different method proposed in ASME Code with ballot of Code Case N-914 – Methods to account for embrittlement
 - Basis in MRP-462, Rev. 1 Draft (Feb. '23)
 - Addressed reviewer comments; out for ballot

Why Direct Fracture Toughness

- Master Curve
 - Reduced uncertainty
 - Reduced inconsistency
 - Characterizes margin statistically
 - Based on actual fracture toughness measurement

Testing Irradiated Material

- Reduced embrittlement prediction uncertainty
- Reduced embrittlement prediction error (bias)
 - e.g., RG1.99R2 high fluence non-conservatism
- Uncertainties are accounted for explicitly

LWRS Spring meeting April 30, 2025: Direct Fracture Toughness for Evaluation of RPV Integrity

WRC Bulletin 4

150

Methodology for Application of Master Curve Test Data

– For PTS evaluations, the following is used:

 $RT_{PTS} = RT_{T0} + adjustment + margin$

- Using ASME Section XI, Appendix G 2013
 - $K_{lc} = 33.2 + 20.734 \exp[0.02 (T {RT_0 + adjustment + margin})] (K_{lc} curve with RTT_0)$ $-RT_0 = T_0 + 35^{\circ}F$
- -OR
- Using Code Case N-830-0 as modified by the NRC condition
 - $K_{Jc-lower95\%} = 22.9 + 33.3 \exp[0.0106 (T {T_0 + adjustment + margin})]$
- This topical report provides a methodology to determine the adjustment and *margin* terms

PWR OWNER'S GROUP Generation and Validation of T_0 Data

- ATM E1921, T₀ can be obtained by
 - Using existing test data
 - Testing specimens machined from unirradiated archive material
 - Testing specimens machined from material irradiated in a PWR surveillance capsule, or
 - E1921 compliant mini-C(T) 4mm thick specimens are approved for use
 - 8 mini-C(T) specimens can be machined from a broken irradiated Charpy specimen
 - Irradiating specimens in at high flux & testing; e.g. material test reactor (MTR)
 - MTR irradiation must include similar validation material also irradiated in a PWR
 - Ensures that MTR irradiated specimens are representative of PWR irradiated specimens
 - Potential Flux effect
 - Other differences: spectrum, temperature, unknown
 - **Ensures well-designed MTR irradiation of specimens**

PWRO

Specimen Testing

- Testing of the same heat of material is required to evaluate the RPV material of interest, except
 - Generic unirradiated T₀ method is described
 - Minimum 4 valid T₀ from same type, manufacturer, or class
 - 95/95 one-sided tolerance limit factor (k1) margin is used rather than 2 which is typically used for large populations
- Testing in accordance with ASTM E1921-20
 - Data sets are screened for inhomogeneity in accordance with 10.6 of ASTM E1921-20
 - Data sets that fail the screening criterion are evaluated in accordance with Appendix X5 "Treatment of Potentially Inhomogeneous Data Sets," of ASTM E1921-20 with T_{OIN} (as calculated in Appendix X5) substituted for T_0 .
 - Any geometry that meets ASTM E1921-20
 - A 10°C bias is added for the SEB Charpy size (10x10mm) specimen (ASTM E1921)

Data Adjustment

- Tested specimens will rarely reflect the exact same irradiation conditions and chemistry as the represented RPV material
 - Adjustments presented herein are made using the embrittlement trend curve (ETC) in ASTM E900-15 (other ETCs could also be used)

 $adjustment = (\Delta T_{30 RPV} - \Delta T_{30 Specimens}) \bullet (If BM, 1.1)$

- Best-estimate inputs are used for the irradiated data adjustments (Cu, Ni, Mn, P, Temp., Fluence)
- An NRC-approved method of fluence evaluation consistent with the plant licensing basis, or another NRC-approved method of fluence evaluation
- Weld = 1.0 and Base metal = 1.1

LWRS Spring meeting April 30, 2025: Direct Fracture Toughness for Evaluation of RPV Integrity

- Comparisons based on ASTM E900-15 ETC
- The NRC staff found that the ASTM E900-15 ETC provided the most accurate characterization of this database*

"Basis for a Potential Alternative to Revision 2 of Regulatory Guide 1.99," TLR-RES/DE/CIB-2020-11, ML20345A003

ML21270A002 NRC presentation, Oct. 2021

Margin Term

 $Margin = 2 \sigma_{E1921}^{2} + \sigma_{adjustment}^{2} + \sigma_{tempspecimen}^{2} + \sigma_{tempRPV}^{2} + \sigma_{fluencespecimen}^{2} + \sigma_{fluenceRPV}^{2}$

- Accounts for uncertainties
 - Uncertainty of E1921 T₀ measurement
 - Uncertainty of adjustment
 - Irradiation temperature (effect of uncertainty on embrittlement using the ETC)
 - Test specimens; 0 if irradiated in assessed RPV
 - RPV; (2°F can conservatively be used)
 - **Fluence** (effect of uncertainty on embrittlement using the ETC)
 - Test specimens (0 if unirradiated)
 - RPV projection

Determination of σ_{F1921}

- Uncertainty of T₀ measurement
 - σ_{F1921} is calculated in accordance with ASTM E1921
- Uncertainty includes screening for material variability
 - In 2019, a homogeneity screening procedure was added to ASTM E1921, Appendix X5
 - Identifies datasets which do not follow expected normal material Weibull distribution and the 95% lower bound curve would not bound 95% of data
 - Inhomogeneity can result from initial toughness variation (i.e. segregation) or uneven embrittlement due to chemical composition variation

LWRS Spring meeting April 30, 2025: Direct Fracture Toughness for Evaluation of RPV Integrity

Basis: J. B. Hall, E. Lucon, and W. Server, "Practical Application of the New Homogeneity Screening Procedure Added to ASTM E1921-20 and Appendix X5 Inhomogeneous Data Treatment," Journal of Testing and Evaluation 50, no. 4 (July/August 2022): 2190-2208. https://doi.org/10.1520/JTE20210716

Determination of \sigma_{adjustment}

σ_{adjustment} is proportional to ASTM E900-15 σ with a minimum value
of 9°C

 $\sigma_{adjustment} = max \left[9^{\circ}C, \{C \bullet ([If BM, 1.1] \bullet \Delta T_{30RPV})^{D} \} \bullet \frac{|adjustment|}{(If BM, 1.1) \bullet \Delta T_{30RPV}} \right]$

- Adjustment from unirradiated results in use of full σ_{E900}
- With small adjustments, the 9°C is the value used
- 9°C uncertainty due to material variability
 - Typical σ_{E1921} ranges from 6 to 8°C
 - Typical σ_{41J} ranges from 4 to 10°C
 - $\sqrt{T_{0init}^2 + T_{0irr}^2 + T_{30init}^2 + T_{30irr}^2} = \sqrt{6^2 + 8^2 + 4^2 + 10^2} = 14.4^{\circ}C$
 - Standard Deviation on Fit Residuals = 17°C for BM and Welds
 - $\sqrt{17^2 14.4^2} = 9^{\circ}C$ (material variability)

Basis: J. B. Hall, B. Golchert, and D. Simpson, "An Examination of Margins Needed to Ensure Conservative Application of T0 to RPV Fracture Toughness,"

ASME PVP2024-125225

Margin Evaluation

- Method was used with measured fracture toughness data to evaluate if margin is sufficient
 - Unirradiated T_0 was adjusted to irradiated T_0 with margin added from same heat (irradiated T_0 as if from RPV assessed)
 - Adjustment from unirradiated results in use of full σ_{E900}
- 98% of the data is bounded for base metals
- 100% is bounded for welds
- Data is mostly from NUREG/CR-6609

Does the method bound measured T_0 at 2nd condition?

LWRS Spring meeting April 30, 2 Figure 9 Comparison of Fracture Toughness Values to Bounding Curves for Weld Heat 72105 Adjusted from Unirradiated T₀

Figure 3 Bounding Adjusted T_0 Compared to Measured Irradiated T_0 for Weld Metals (labels are capsule names which are referenced later)

Figure 4 Bounding Adjusted T₀ Compared to Measured [Irradiated T₀ for Base Metals

 $\sigma_{adjustment} = max \left[9^{\circ}C, \{C \bullet ([If BM, 1.1] \bullet \Delta T_{30RPV})^{D} \} \bullet \frac{1}{C} \right]$

Margin Evaluation

- Method was used with measured fracture toughness data to evaluate if margin is sufficient
 - Irradiated T_0 was adjusted to another irradiated T_0 with margin added from same heat (2nd irradiated T₀ as if from RPV assessed)^{Figure 5} Bounding Adjusted T₀ Compared to Measured Irradiated T₀ for Weld Metals (horizontal labels indicate
 - With small adjustments, the 9°C is the value used for $\sigma_{adjustment}$
- 97% of the data is bounded

Basis: J. B. Hall, B. Golchert, and D. Simpson, "An Examination of Margins Needed to Ensure Conservative Application of T0 to RPV Fracture Toughness,"

ASME PVP2024-125225

LWRS Spring meeting April 30, Reactor MD1 Beltline Toll

capsule names showing measured T₀; vertical labels indicate capsules from which measured T₀ was adjusted and margin added)

PWROG-18068 Summary

The benefits of an irradiated direct fracture toughness data evaluation methodology are:

- Establishes a robust fracture toughness basis ensuring public health and safety by reducing uncertainty and enabling a statistical understanding of the actual irradiated RPV fracture toughness
- Specifically, this topical report discusses a methodology to:
 - Determine the ductile-brittle transition reference temperature (T₀)
 - Adjust the data for differences between the tested material and the RPV component of interest
 - Account for test result, adjustment and input uncertainties and material variability in the respective RPV component
 - Apply the data using the ASME Section XI Code.

LWRS Spring meeting April 30, 2025: Direct Fracture Toughness for Evaluation of RPV Integrity

TY ness data evaluation

odology to: mperature (T₀) material and the RPV **Next Steps**

- Application of approved PWROG-18068
 - Initiated PWROG project
 - Support submittal of 3 pilot plant evaluations using existing T_0 data
 - Develop detailed test matrix
 - Select limiting materials most likely to benefit most PWROG plants
 - Balance irradiated material testing cost vs. unirradiated vs. benefit
 - Extend life, license renewal
 - Uprates, 2-year cycles, fuel management changes, other increase in fluence to RPV
 - Extend P-T curve applicability or open operating window
 - Mitigate new surveillance data or other new potential information

Collaboration Activities

○ Recent

- Dr. Chen and Sokolov have attended PWROG materials committee meetings to listen to ongoing activities and present LWRS work
- ORNL provided archive Palisades pressurizer weld for use in plant SLR application of direct fracture toughness
- PWROG provided unirradiated archive Zion Unit 1 weld and plate to ORNL so that irradiated RPV beltline test results could be compared
- Palisades high fluence capsule was withdrawn, shipped, disassembled with specimens sent to ORNL for testing
- Provided unirradiated archive Palisades weld and plate to ORNL so that irradiated high fluence capsule test results could be compared

• Future possibilities

- Test Zion Unit 1 surveillance capsule materials for T₀ to compare to RPV shell test results
- Testing and expertise to help resolve observed ductile instabilities (test record crack jumps) when testing irradiated stainless and RPV steel on upper-shelf

LWRS Spring meeting April 30, 2025: Direct Fracture Toughness for Evaluation of RPV Integrity

e to RPV shell test results es (test record crack jumps) when

Questions?

The Materials Committee is established to provide a forum for the identification and resolution of materials issues including their development, modification and implementation to enhance the safe, efficient operation of PWR plants.