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Power Uprates - Unprecedented Opportunity
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Near-term delivery of substantial amount of reliable baseload energy. Untapped 
available power (historical level of uprates):
• BWRs: ~ 1,800 GWe, equivalent to ~ 2 large LWRs, or ~ 15–20 small modular reactors
• PWRs: ~3,600 GWe, equivalent to ~ 3–4 large LWRs, or ~ 30–40 small modular reactors

Near-term, cost-efficient added power from existing nuclear fleet
• Estimated costs of power uprates

• Small uprates (MUR, < 2%): ~ $500 – $800 / kW
• Medium uprates (SPU, 2%-7%) ~ $800 – $1,500 / kW
• Extended power uprates (EPU, > 7%): ~ $1,500 – $2,500 / kW
• Very large power uprates with large plant modifications: up to $5,000 / kW 

− Vogtle Units 3 & 4: ~ $11,000 /kW
− New AP1000 estimates: $8,300–$10,375/kW, 6.5–8 years construction time1

• Improved economics of plant lifetime extension for another 20 years
• An opportunity to modernize

Added power to produce hydrogen
• Explicitly allowed for Inflation Reduction Act 

(IRA) §45V hydrogen production credit
• Hydrogen credits further strengthen the 

business case for power uprates

Bridging the gap to new nuclear
• U.S. nuclear energy to triple by 2050 – need to start with uprates
• Re-establishing U.S. nuclear capabilities and dominance:

• Workforce
• Supply chain for  nuclear-grade systems and components
• Scaled capacity of regulatory framework

https://web.mit.edu/kshirvan/www/research/ANP201%20TR%20CANES.pdf


Larger Uprates Faster – the Urgent Need

R&D goals:
• Enable larger-size uprates
• Demonstrate safety of power 

uprates
• Support economic feasibility by 

efficiency gains

Objective of 
Power Uprate:

Increase generating 
capacity as much as 

possible while 
ensuring safety and 

economical 
feasibility
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Larger Uprates Faster

Power 
Uprate

• Fuel licensing
• Targeted experiments
• M&S capabilities
• Regulatory framework

• Regulatory approvals
• Targeted experiments
• M&S capabilities

• Supply chain
• Project execution – 

on-time, on-budget

• Reduced 
conservatisms

• Regulatory approvals
• M&S capabilities

Larger 
Safety 

Margins

Plant 
Systems 
Upgrades

Advanced 
Fuels 

(higher power 
density & 
burnup)

Time at 
Temperature 

(TaT)

R&D AREAS:
• Enhanced modeling and 

simulation tools
• Systems analyses
• Fuel performance 

analyses
• Demonstration of adequate 

safety margins
• Reducing 

conservatisms
• Detailed analyses
• Reducing uncertainties

• Artificial Intelligence and 
Machine learning (AI/ML) 
technologies

• Risk-informed licensing 
pathways

• Feasibility assessments
• Demonstrated case studies 

 SYSTEMS  INTEGRATION

3-6 GWe

~1GWe

~2GWe



ATF Fuel Performance

• Identify thermal and mechanical 
properties of selected ATF cladding

• Modeling and simulation of fuel 
performance

Reactor Core M&S

• Lattice physics design
• Reactor core modeling
• Equilibrium cycle analysis
• Core TH analysis

Response Surface Analysis 
& Optimization

• Multiphysics Uncertainty Analysis
• Fuel assembly design Optimization

− Multi-Cycle 

Safety limits 
with 

increased 
power uprate

Tabulated cross-section 
Kinetic parameters
Boundary/initial condition

Optimization 
Constrains

Optimized reactor 
FA design(s)

Power Uprates – Assessment of Reactor Core Capabilities

System TH M&S

• Transfer results from reactor core 
simulation

• TH-analysis on selected transient 
scenario(s) 

• Identify engineering design criteria of Accident-
Tolerant Fuel (ATF) for power uprate

• ATF + Extended Enrichment + (possibly) High-
Burnup (HBU)
− ATF can…

− reduce oxidation kinetic 
− reduce hydrogen production & hydrogen pick up
− improve post-quench ductility
− improve corrosion resistance

− Dopped Pellets fuel has…
− higher density 
− higher burnup support
− higher plasticity at high temperature
− better fission gas retention
− improved PCI resistance

• Utilize existing data/models/methods first for 
ATF safety evaluation 
− Additional experiments in need can be 

performed

Project Description
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Overall Approach for Sizable PWR Power Uprates

• Approach: ATF + EE (extended enrichment) + (possible) HBU
• Near-term ATF concepts: existing data, models, and methods can be used for its safety 

evaluations
− (Primarily) Cr-coated Zr cladding

− Significantly reduced oxidation kinetic 
− Significantly reduced hydrogen production and hydrogen pick up
− Improved post-quench ductility
− Improved corrosion resistance

− (Optionally) Doped pellets
− Higher density, can support higher burnup
− Higher plasticity at high temperature
− Better fission gas retention
− Improved PCI resistance
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LWRS-Developed Framework (cont’d)
Two possible approaches to evaluation of power uprates:

1. Staged optimization approach ✓
−Core  system, steady-state  transient, single-physics  multiphysics
−Pros: computationally efficient; no complicated coupling scheme 
−Status: multi-objective optimization of core design has been demonstrated; working on core-to-

system informing scheme
−Needs:

− Relatively accurate surrogate safety limit (e.g., hot channel factors Fq & FΔH) 

2. Holistic multiphysics optimization approach
−Pro: incorporation of experimentally determined safety limits (e.g., peak temp. during transient); 

avoid use of surrogate limits 
−Needs: 

− Experimentally determined safety limits 
− ML surrogate model to accelerate optimization

7



• Design objectives:
− Sizable (~20%) power uprates for a generic PWR plant with minimal increase in fuel cost

• Design variables
− Core reloading scheme
− Fuel assembly (enrichment, rod dimension, lattice configuration, etc.) and control rod design
− Plant operating conditions: flowrate, temperature, etc.

• Design constraints
− Safety: hot channel factors, critical boron concentration, reactivity feedback coefficients, shutdown 

margin, etc.
− Performance: burnup, enrichment, etc.
− Economics: reloading cycle length, component upgrade, etc.

Reactor Core and System Design Problem
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• Need input from ATF (and HBU) experimental campaign
− Obtain and update correlations used in fuel performance code
− How to translate new thermal and mechanical limit of ATF failure 

to constraints used in core optimization 
− For example:

− Increase power output leads to reduced margin for hot channel 
factors (Fq & FΔH)

− ATF can help maintain the margin due to elevated temperature 
criterion

− How to correlate temperature criterion during loss of coolant 
accident (LOCA) with linear heat generation rate (LHGR) and hot 
channel factors? Murakami (2023)*

Connections to Ongoing R&D Activities (cont.)

* Murakami (2023) Development of Cr coated zirconium alloy fuel cladding: Progress in 2022. Annual EPRI/DOE/INL Joint Combined Workshop on Accident Tolerant Fuel and Higher Burnup. April 2023.9



Fuel Performance AnalysisReactor Core Design

experiment Modeling & 
Simulation Data Flow

Completed
Code Interface

Core Design / Fuel Performance 
Optimization

SERPENTPARCSPOLARIS

Planned
Code Interface

LWRS Power Uprate – Workflow

System T/H Analysis

RELAP5-3D COBRA 
TF TRANSURANUS FASTBISON

ATF Fuel/Cladding 
Properties and Behavior

Risk-Informed Multi-Physics Analysis
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Pass Pass

Fail

Pass

Constraints in 
core design

Constraints in 
fuel performance

Constraints in 
thermal-hydraulics

Update of potential core design candidates
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Performance System Analysis 

Fail

Enabling R&D
Optimization of Reactor Core Design



Single Cycle Optimization |  Single Objective

A generic 17x17 PWR reactor core is used for the demonstration
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Single Cycle Optimization |  Multi-Objective

A generic 17x17 PWR reactor core is used for the demonstration



Cycle-by-Cycle Optimization Process in the PRLO Framework

Cycle n optimization 
is linked to 

Cycle n+1 optimization 
through 

the Inventory Management 

Key Challenges of 
Multicycle Optimization

− Very Large Design Space 
− Different irradiation histories of each FA
− Multi-Unit Fuel Inventory Management

Upcoming Research - Cycle-by-Cycle Optimization | Multi-Objective
Fuel Inventory Management



Phase 1 (FY19–20)
Methodology Development

Phase 2 (FY21–22)
Framework Development
for PWR

Phase 3 (FY22–23)
Framework Enhancement
for PWR

Phase 4 (FY24–25)
Framework Demonstration 
for PWR

Setup tools & methods

Single-objective
optimization algorithms 

Multi-objective 
optimization algorithms

Single-cycle optimization 
of a genetic PWR core

optimization acceleration 
methods

Multicycle optimization

Multicycle optimization 
of a genetic PWR

PWR Benchmark Study 
with Historical Reference

Framework
Development

Demonstration

Stakeholder 
Engagement

Set plant-based scenarios

Simulate DBA and Evaluate 
safety margin

Code interface 
(CASMO/SIMULATE)

Apply risk-informed 
approach Uncertainties quantification

Multiphysics 
Analysis & 
Coupling

Core Optimization Technology Roadmap
Phase 5 (FY26–27)
Framework Development
for BWR (Planned)

NDA with a vendor company
for BWR Optimization

NDA with a utility company
for PWR Optimization

Fast responding ROM for 
Fuel Depletion (Neutronics)

A genetic BWR core 
modeling

Subchannel modeling

Framework (plug-in) 
release

Data/Knowledge Transfer
with a utility company

Code Interface
(POLARIS/PARCS)

Application to recent Cycle 
optimization for PWR

Data/Knowledge Transfer
with a vendor company



Sustaining National Nuclear Assets

lwrs.inl.gov


	Slide Number 1
	Power Uprates - Unprecedented Opportunity�
	Larger Uprates Faster – the Urgent Need
	Larger Uprates Faster
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Enabling R&D�Optimization of Reactor Core Design
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

