INL/MIS-25-84438

Svetlana Lawrence RISA Pathway Lead

April 30, 2025

Larger Power Uprates – Opportunities, Challenges, and Enablers

Spring Program Review Meeting

Power Uprates - Unprecedented Opportunity

Near-term delivery of substantial amount of reliable baseload energy. Untapped available power (historical level of uprates):

- BWRs: ~ 1,800 GWe, equivalent to ~ 2 large LWRs, or ~ 15–20 small modular reactors
- PWRs: ~3,600 GWe, equivalent to ~ 3–4 large LWRs, or ~ 30–40 small modular reactors

Near-term, cost-efficient added power from existing nuclear fleet

- Estimated costs of power uprates
 - Small uprates (MUR, < 2%): ~ \$500 \$800 / kW
 - Medium uprates (SPU, 2%-7%) ~ \$800 \$1,500 / kW
 - Extended power uprates (EPU, > 7%): ~ \$1,500 \$2,500 / kW
 - Very large power uprates with large plant modifications: up to \$5,000 / kW
 - Vogtle Units 3 & 4: ~ \$11,000 /kW
 - New AP1000 estimates: \$8,300-\$10,375/kW, 6.5-8 years construction time1
- Improved economics of plant lifetime extension for another 20 years
- An opportunity to modernize

Bridging the gap to new nuclear

- U.S. nuclear energy to triple by 2050 need to start with uprates
- Re-establishing U.S. nuclear capabilities and dominance:
 - Workforce
 - Supply chain for nuclear-grade systems and components
 - Scaled capacity of regulatory framework

Added power to produce hydrogen

- Explicitly allowed for Inflation Reduction Act (IRA) §45V hydrogen production credit
- Hydrogen credits further strengthen the business case for power uprates

000

1 | 1

Larger Uprates Faster – the Urgent Need

R&D goals:

- Enable larger-size uprates
- Demonstrate safety of power uprates
- Support economic feasibility by efficiency gains

S ENABI

Objective of Power Uprate:

Increase generating capacity as much as possible while ensuring safety and economical feasibility CONSTRAINTS

Larger Uprates Faster → SYSTEMS INTEGRATION

R&D AREAS:

- Enhanced modeling and simulation tools
 - Systems analyses
 - Fuel performance
 analyses
- Demonstration of adequate safety margins
 - Reducing
 conservatisms
 - Detailed analyses
 - Reducing uncertainties
- Artificial Intelligence and Machine learning (AI/ML) technologies
- Risk-informed licensing pathways
- Feasibility assessments
- Demonstrated case studies

Power Uprates – Assessment of Reactor Core Capabilities

Overall Approach for Sizable PWR Power Uprates

- **Approach:** ATF + EE (extended enrichment) + (possible) HBU
- Near-term ATF concepts: existing data, models, and methods can be used for its safety evaluations
 - (Primarily) Cr-coated Zr cladding
 - Significantly reduced oxidation kinetic
 - Significantly reduced hydrogen production and hydrogen pick up
 - Improved post-quench ductility
 - Improved corrosion resistance
 - (Optionally) Doped pellets
 - Higher density, can support higher burnup
 - Higher plasticity at high temperature
 - Better fission gas retention
 - Improved PCI resistance

LWRS-Developed Framework (cont'd)

Two possible approaches to evaluation of power uprates:

- **1.** Staged optimization approach \checkmark
 - Core \rightarrow system, steady-state \rightarrow transient, single-physics \rightarrow multiphysics
 - Pros: computationally efficient; no complicated coupling scheme
 - Status: multi-objective optimization of core design has been demonstrated; working on core-tosystem informing scheme

- Needs:

– Relatively accurate surrogate safety limit (e.g., hot channel factors Fq & $F\Delta H$)

2. Holistic multiphysics optimization approach

 Pro: incorporation of experimentally determined safety limits (e.g., peak temp. during transient); avoid use of surrogate limits

- Needs:

- Experimentally determined safety limits
- ML surrogate model to accelerate optimization

Reactor Core and System Design Problem

Design objectives:

- Sizable (~20%) power uprates for a generic PWR plant with minimal increase in fuel cost

Design variables

- Core reloading scheme
- Fuel assembly (enrichment, rod dimension, lattice configuration, etc.) and control rod design
- Plant operating conditions: flowrate, temperature, etc.

Design constraints

- Safety: hot channel factors, critical boron concentration, reactivity feedback coefficients, shutdown margin, etc.
- Performance: burnup, enrichment, etc.
- Economics: reloading cycle length, component upgrade, etc.

Connections to Ongoing R&D Activities (cont.)

- Need input from ATF (and HBU) experimental campaign
 - Obtain and update correlations used in fuel performance code
 - How to translate new thermal and mechanical limit of ATF failure to constraints used in core optimization
 - For example:
 - Increase power output leads to reduced margin for hot channel factors (Fq & $F\Delta H$)
 - ATF can help maintain the margin due to elevated temperature criterion
 - How to correlate temperature criterion during loss of coolant accident (LOCA) with linear heat generation rate (LHGR) and hot channel factors?

Murakami (2023)*

LWRS Power Uprate – Workflow

Enabling R&D Optimization of Reactor Core Design

Single Cycle Optimization | Single Objective

Fitness of Pattern, Constraints, Objective

A generic 17x17 PWR reactor core is used for the demonstration

Single Cycle Optimization | Multi-Objective

A generic 17x17 PWR reactor core is used for the demonstration

Upcoming Research - Cycle-by-Cycle Optimization | Multi-Objective Fuel Inventory Management

Key Challenges of Multicycle Optimization

- Very Large Design Space
- Different irradiation histories of each FA
- Multi-Unit Fuel Inventory Management

Cycle n optimization is linked to Cycle n+1 optimization through the Inventory Management

Core Optimization Technology Roadmap

	Phase 1 (FY19–20) Methodology Development	Phase 2 (FY21–22) Framework Development for PWR	Phase 3 (FY22–23) Framework Enhancement for PWR	Phase 4 (FY24–25) Framework Demonstration for PWR	Phase 5 (FY26–27) Framework Development for BWR (<i>Planned</i>)
Multiphysics Analysis & Coupling	Set plant-based scenarios	Apply risk-informed approach	Uncertainties quantification	Fast responding ROM for Fuel Depletion (Neutronics)	A genetic BWR core modeling
	Simulate DBA and Evaluate safety margin				Subchannel modeling
Framework Development	Setup tools & methods	Code interface (CASMO/SIMULATE)	Multi-objective optimization algorithms	optimization acceleration methods	Code Interface (POLARIS/PARCS)
		Single-objective optimization algorithms		Multicycle optimization	Framework (plug-in) release
Demonstration			Single-cycle optimization of a genetic PWR core	Multicycle optimization of a genetic PWR	Application to recent Cycle optimization for PWR
				PWR Benchmark Study with Historical Reference	
Stakeholder Engagement			NDA with a utility company for PWR Optimization	Data/Knowledge Transfer with a utility company	Data/Knowledge Transfer with a vendor company
				NDA with a vendor company for BWR Optimization	

Sustaining National Nuclear Assets

lwrs.inl.gov