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• Fuel takes ~17% of the total generating cost
− Costs ~$43M for a typical LWR fuel reload in a year

2 * Nuclear Energy Institute (2023). “Nuclear Costs In Context.” NEI
** International Atomic Energy Agency (2020). “Reload Design and Core Management in Operating Nuclear Power Plants.” IAES-TECDOC-1898, IAEA.
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Automated simulation-based fuel reloading analysis Framework is needed.

• Traditional methods deciding core loading pattern and 
reload quantity are labor-intensive and time-consuming. 

− More than 10E+30 combinations for 17x17 PWR core
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Risk-Informed Multi-Physics Uncertainty Analysis

[Constraints]
• Design limits
• Safety goals

[Objectives]
• Max. energy production
• Min. fuel cost

Core Design 
(e.g., PARCS and SIMULATE)

• Core specification
• Fuel inventory
• Perturbed input files

System Analysis 
(RELAP5-3D)

• Safety parameters
• PCT, DNBR, HTC
• Additional metadata

• DBA scenarios 
• Core map and data
• Perturbed input files

Fuel Performance 
(TRANSURANUS)

• Fuel rod modeling
• Core and TH data
• Perturbed input files

Genetic Algorithm

EFPD: Effective full power day
HCF: Hot channel factor
DBA: Design basis accident

PCT: Peak cladding temperature
DNBR: Departure of nucleate boiling rate
HTC: Heat transfer coefficient

TH: Thermal-hydraulics
RIP: Rod internal pressure
FFRD: Fuel failure, relocation and dispersal

Plant ReLoad Optimization (PRLO) Platform:
Data Flow

• PCT, RIP, Oxidation
• FFRD related data
• Additional metadata

• EFPD, Burnup, HCF
• Boron concentration
• Additional metadata
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• Settings
− PWR core with 157 fuel assemblies (FA)
− Quarter-core symmetry
− 6 FA designs → design space = 7.1⨉1032

− 200 Population w/ 90 Iteration for GA

4

• Constraints
− FQ (Heat flux hot channel factor)  <  2.1 
− FΔH (Nuclear enthalpy rise hot channel factor) < 1.48
− Peak critical boron concentration (CBC) <1300 pcm

Fuel type ID 0 1 2 3 4 5

Enrichment 
(wt%) 2 2.5 2.5 3.2 3.2 Reflector

Burnable
poison None None 16 Gd rods None 16 Gd rods -

• Objective
− Maximize cycle length (cycle energy production)

Randomly generated 
1/8 PWR Core

NOTE: FQ and FΔH are peaking factors used to characterize core power distribution in terms of ratios of local maximum power output to average core output.  

Case Study: Single-objective Optimization for Core Design
Introduction
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Case Study: Single-objective Optimization for Core Design
Demonstration

5 A generic PWR reactor core is used for the demonstration






Click to edit Master title (reduce font if over 1 line)

• Click to edit text
− Second level

• Third level
− Fourth level

• Fifth level

Optimized Fuel Loading PatternInitial Fuel Loading Pattern
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Case Study: Single-objective Optimization for Core Design
Demonstration

A generic PWR reactor core is used for the demonstration
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• Settings
− PWR core with 157 fuel assemblies (FA)
− Quarter-core symmetry
− 6 FA designs → design space = 7.1⨉1032

− 100 Population w/ 50 Iteration for GA
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Case Study: Multi-objective Optimization for Core Design
Introduction

• Constraints
− FQ (Heat flux hot channel factor)  <  2.1 
− FΔH (Nuclear enthalpy rise hot channel factor) < 1.48
− Peak critical boron concentration (CBC) <1300 pcm

Fuel type ID 1 2 3 4 5 6

Enrichment 
(wt%) Reflector 2 2.5 2.5 3.2 3.2

Burnable
poison - None None 16 Gd 

rods None 16 Gd 
rods

• Objectives
− Maximize cycle length (cycle energy production)
− Minimize fuel cost

Randomly generated PWR Core

NOTE: FQ and FΔH are peaking factors used to characterize core power distribution in terms of ratios of local maximum power output to average core output.  

A generic PWR reactor core is used for the demonstration
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Demonstration with Multi Objective 
Optimal Core Patterns

Cycle length (EFPD) 364.10

Fuel cost (M$) 499.45

FQ 2.092

CBC (ppm) 1295.6

FΔH 1.479

Cycle length (EFPD) 373.80

Fuel cost (M$) 508.28

FQ 2.090

CBC (ppm) 1293.9

FΔH 1.466

Cycle length (EFPD) 383.50

Fuel cost (M$) 520.92

FQ 2.098

CBC (ppm) 1296.8

FΔH 1.476
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Solution  
#1

Solution  
#2

Solution  
#3

8 A generic PWR reactor core is used for the demonstration
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Demonstration with Multi Objective 
Common Features of Optimal Core Designs

• All three core designs present the Low Leakage Loading pattern (L3P)
− Low/medium reactivity fuel at inner region to reduce the power peaking at core center
− High reactivity fuel at outer region to balance the power
− Use of BP to suppress the excess reactivity
− Low reactivity fuel at core boundary to reduce the leakage / increase the neutron economy

9

Solution  #3Solution  #1 Solution  #2

A generic PWR reactor core is used for the demonstration
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Conclusion & Future Work

• Presented the PRLO framework, aimed at AI-driven reactor core design for addressing real-world 
challenges.

• Demonstrated constrained multi-objective core design optimization problem for a 17 × 17 PWR core to 
minimize fuel cost and maximize fuel cycle length.

• Future works include… 
− Conducting a full-scale demonstration of a PWR core design with multi-cycle problem incorporating safety analysis. 

− Enhancing multi-objective optimization capabilities (e.g., adaptive mutation and crossover) 

10
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Completed Works (~FY24)

• Demonstration of Genetic Algorithm-based optimization framework with single/multi-objective(s).
• Design of optimized reactor core which considers system safety analysis and fuel performance, thus multi-

physics methodology.
• Reports are available at: https://www.osti.gov/
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September 
FY21

August 
FY22

December 
FY22

March
FY23

September
FY23
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• GA mimics natural selection and evolution 
− No need of gradient calculation
− Suits non-linear and non-convex problems 
− Constrained and unconstrained
− Continuous, discrete, or mixed variables

• GA explores group of solutions at each iteration
− Starts with initial list of solutions (neutronics, 

thermal-hydraulics, etc.)
− Evaluates and determines potential solutions
− Randomly proposes new solutions, then selects 

best solution (cross-over, mutation, and survivor 
selection operations). 

13

Genetic Algorithm

No
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Evolutionary Operators of GAs

• Parent selectors:
− Roulette Wheel
− Tournament Selection
− Rank Selection

25%

41%
7%5%
10%

12%

Fitness

P1 P2 P3 P4 P5 P6

Individual Fitness

P1 5

P2 8.2

P3 1.4

P4 0.98

P5 2

P6 2.3

14
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Evolutionary Operators of GAs

• Crossovers:
− One Point
− Two points
− Uniform

15
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Evolutionary Operators of GAs

• Mutators:
− Swap Mutation
− Scramble Mutation
− Bit Flip Mutation
− Inversion Mutation

16
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NSGA-II for Multi-Objective Problem  
Overview
• NSGA-II is…

− Multi-objective, fast non-dominated sorting elite GA

• Why NSGA-II?
− Lower computational complexity than NSGA-I
− Population diversity is guaranteed. 
− One of the multi-objective evolutionary computation benchmark 
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Multiple optimal solutions

A multi-objective optimization problem can be written as 

Minimize (or maximize) 𝑓𝑓1 x ,𝑓𝑓2(x), … , 𝑓𝑓𝑀𝑀(x) 𝑇𝑇

Subject to
𝑔𝑔𝑗𝑗 𝒙𝒙 ≥ or ≤  0

ℎ𝑘𝑘 𝒙𝒙 = 0
𝑥𝑥𝑖𝑖

(𝐿𝐿) ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖
𝑈𝑈

− 𝑓𝑓𝑚𝑚 𝒙𝒙  is m-th objective, where m = 1, 2, …, M.
− 𝑔𝑔𝑗𝑗 𝒙𝒙  is j-th inequality constraint, where j = 1, 2, …, J
− ℎ𝑘𝑘 𝒙𝒙  is k-th equality constraint, where k = 1, 2, …, K

− 𝒙𝒙 = (𝑥𝑥1 , 𝑥𝑥2 , … , 𝑥𝑥𝑛𝑛 )𝑇𝑇 is a n-dimensional vector

− 𝑥𝑥𝑖𝑖
(𝐿𝐿) and 𝑥𝑥𝑖𝑖

(𝑈𝑈) are the lower and upper bounds on i-th variable

Multi-objective optimization problem
subject to constraints

Multi-objective optimization technique

Higher-level information 
(or operator’s decision)

One optimal solution
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NSGA-II for Multi-Objective Problem  
Elitism

• Keep the best chromosomes from parent and offspring population
• Elitism does not allow an already found optimal solutions to be deleted. 
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NSGA-II for Multi-Objective Problem  
Dominance Depth Method 

• Assign rank to each chromosome using the dominance depth
• Non-dominated points belong to first rank. 
• The non-dominated solutions from remainder are in second rank, and so on. 
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NSGA-II for Multi-Objective Problem  
Niching for the first rank

20

• Niching gives preference to chromosomes that are not crowded.
• Crowding distance measures crowdedness of a chromosome 

w.r.t. its neighbors lying on the same front. 
− Crowding distance = a + b
− a and b are normalized distances. 

• Chromosomes from the first rank are selected based on niching.
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Case Study: Multi-objective Optimization for Core Design
Feasible Region and Pareto Frontier

NOTE: Feasible region: Search space region where all constraints are complied; Pareto frontier: Set of optimal solutions
21
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